
Academic Editor: Piotr Prus

Received: 7 March 2025

Revised: 14 April 2025

Accepted: 18 April 2025

Published: 20 April 2025

Citation: Theofilou, A.; Nastis, S.A.;

Tsagris, M.; Rodriguez-Perez, S.;

Mattas, K. Design and Implementation

of a Scalable Data Warehouse for

Agricultural Big Data. Sustainability

2025, 17, 3727. https://doi.org/

10.3390/su17083727

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Design and Implementation of a Scalable Data Warehouse for
Agricultural Big Data
Asterios Theofilou 1,* , Stefanos A. Nastis 1 , Michail Tsagris 2, Santiago Rodriguez-Perez 3

and Konstadinos Mattas 1

1 Department of Agricultural Economics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
snastis@auth.gr (S.A.N.); mattas@auth.gr (K.M.)

2 Department of Economics, University of Crete, 74100 Rethymno, Greece; mtsagris@uoc.gr
3 Biotechnology Applications, IDENER, Early Ovington 24 Nave 8-9, 41300 Seville, Spain;

santiago.rodriguez@idener.ai
* Correspondence: tasterios@agro.auth.gr

Abstract: The rapid growth of agricultural data necessitates the development of storage
systems that are scalable and efficient in storing, retrieving and analyzing very large
datasets. The traditional relational database management systems (RDBMSs) struggle to
keep up with large-scale analytical queries due to the volume and complexity inherent
in those data. This study presents the design and implementation of a scalable data
warehouse (DWH) system for agricultural big data. The proposed solution efficiently
integrates data and optimizes data ingestion, transformation, and query performance,
leveraging a distributed architecture based on HDFS, Apache Hive, and Apache Spark,
deployed on dockerized Ubuntu Linux environments. This paper highlights the reasons
why a DWH is irreplaceable for big data processing, without disputing the strengths of
traditional databases in transactional use cases. By detailing the architectural choices and
implementation strategy, this study provides a practical framework for deploying robust
DWH solutions that are useful in supporting agricultural research, market predictions and
policy decision-making.

Keywords: data warehouse; big data; agricultural data

1. Introduction
A diverse range of sources are constantly generating agricultural data. Climate models,

market transactions, IoT sensors, satellite imagery, and supply chain records are only some
of them [1]. The effective management and utilization of these data are crucial when
attempting to make yield predictions, make price predictions, assess the climate risks, make
policy decisions, or apply precision agriculture techniques [2]. For instance, in their study,
Rana et al. [3] demonstrated that utilizing a big data framework significantly improved
the prediction accuracy of agricultural commodity price forecasting. Traditional database
management systems (DBMSs) cannot handle these massive and varied datasets. When
data are in the range of petabytes, exabytes, or more, or in heterogeneous formats, DBMSs
lack the distributed processing needed to cope. As data volumes grow, so does the need for
a scalable framework, optimized for analytical queries.

A data warehouse (DWH) is designed to address these challenges. It provides struc-
tured and scalable high-performance mechanisms for the storage and retrieval of data,
which are optimized for big data analytics [4]. Data can be processed in two distinct ways,
with the first being the online transactional processing (OLTP) of data, for which relational

Sustainability 2025, 17, 3727 https://doi.org/10.3390/su17083727

https://doi.org/10.3390/su17083727
https://doi.org/10.3390/su17083727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0009-0005-9494-1614
https://orcid.org/0000-0002-3102-5505
https://orcid.org/0000-0002-9877-3188
https://orcid.org/0000-0001-8304-4292
https://doi.org/10.3390/su17083727
https://www.mdpi.com/article/10.3390/su17083727?type=check_update&version=2

Sustainability 2025, 17, 3727 2 of 19

databases are optimized and best suited, and the other being online analytical processing
(OLAP), which a DWH is built to support. While relational databases are irreplaceable for
structured data and transactional processing, a DWH is the only practical solution for big
data analytics. Since relational databases simply fail to handle datasets characterized as big
data, our study highlights architectural choices rather than direct performance comparisons.

This paper presents the design and implementation of a scalable DWH for agricultural
big data, emphasizing the distributed storage and processing, the performance optimization
and the flexible deployment and scalability of the system, and finally, it addresses the
data security and accessibility. This is achieved firstly by utilizing HDFS for scalable
storage and Apache Hive for querying large datasets; secondly by implementing Apache
Spark for in-memory processing that reduces the query latency compared to traditional
MapReduce methods; thirdly by leveraging Dockerized containers on Ubuntu Linux,
ensuring modularity and ease of deployment across cloud and on-premise environments;
and fourthly by implementing role-based access control (RBAC) authentication and data
governance policies to regulate user access.

Agricultural data are spatiotemporal, seasonal, and generated from heterogeneous
sources. The proposed architecture was developed with these characteristics in mind. More
specifically, HDFS enables the scalable storage of long-term time-series data, Hive can sup-
port structured analytics being performed in irregularly sampled records, while Kafka and
Spark make possible the real-time processing of sensor streams. The proposed setup ensures
that the DWH can handle the unique data-processing requirements of agricultural data.

The objective of this study is to present the design and implementation of a DWH
solution that is tailored to agricultural data. Specifically, this paper aims to address the
limitations that traditional relational database management systems (RDBMSs) face when
handling diverse and large-scale agricultural data. To achieve this aim, this work will
present the state-of-the-art software tools and their architectural orchestration, which
ensure data security, enhanced query performance on diverse and massive data source
inputs, extensibility and fault tolerance.

The rest of this paper is arranged as follows. Section 2 presents the findings of
the literature review that guided the design decisions for the DWH implementation. In
Section 3, the details of the proposed system are presented, including the data flows and
management, architecture design, and security. Section 4 presents the results of our work,
and Section 5 concludes with a discussion on the recommendations for agricultural big
data management and considerations for future improvements.

2. Literature Review
In numerous studies, the development of data warehouse (DWH) architectures and

extract transform load (ETL) processes has been extensively researched, and many aspects
of the design, optimization, scalability, real-time processing, agricultural applications,
and implementation have been investigated. This section presents some key research
contributions that have guided the development of our scalable agricultural DWH system.

2.1. Data Warehouse Architectures and Optimization

A DWH needs to be set up in such a way that the software tools seamlessly integrate
with each other. This arrangement of tools and software is the architectural design of the
system. The following three studies guided our architectural choices and supported the
integration of some of the Apache big data framework tools.

Regarding the choices that need to be made with respect to the architectural settings
and data warehouse optimization, Yang, Ge and Helfert [5], after analyzing 116 publications
and modeling 73 data warehouse architectures, identify 9 representative architectures that

Sustainability 2025, 17, 3727 3 of 19

they summarize into a “big picture”, providing a comprehensive overview of the DWH
architectures. In a same manner, Chaudhuri and Dayal [6] focus on the importance of
online analytical processing (OLAP) systems in data warehouses, and they also discuss the
relational OLAP (ROLAP), multidimensional OLAP (MOLAP), and hybrid OLAP (HOLAP)
architectures. Their findings reinforce the need for distributed query processing abilities in
a DWH, which we achieve through Apache Hive on Hadoop.

Jameel et al. [7], in their work, compare centralized vs. distributed DWH architec-
tures, and they conclude that distributed architectures offer better fault tolerance and
scalability. They also evaluate the ETL optimization techniques and find that distributed
ETL pipelines (e.g., Apache Spark, Apache Flink, Apache Kafka) outperform traditional
monolithic ETL processes. This further establishes our system’s architecture, which uses
Spark-based ETL for agricultural big data ingestion and transformation.

Thesma et al. [8] also support the use of distributed architectures in agriculture, propos-
ing a Hadoop cluster for high-throughput cotton phenotyping. Their work highlighted the
superior performance of the multi-node setup over the single-node systems and the value
of scalable distributed systems for agricultural monitoring.

In their review, Cravero et al. [9] confirm that most agricultural data storage systems
rely on Hadoop, Hive and Spark for distributed storage and large agricultural datasets,
strengthening our argument for using the Hadoop ecosystem tools.

2.2. ETL Processes and Real-Time Data Warehousing

To manage agricultural big data, there is a need for efficient extraction, transformation
and loading (ETL) workflows. These workflows specify the methods by which data coming
from various sources will be inserted into the DWH after being appropriately processed.
The following four studies aided in the selection of tools and methodologies for the quality
management of real-time data.

In his study, Vassiliadis [10] provides a comprehensive analysis of ETL technologies,
where he covers extraction challenges like keeping data quality during the ETL process,
transformation methodologies, and data loading optimizations. Furthermore, he highlights
the need to shift from batch processing to real-time ETL, supporting our use of Apache
Kafka and Spark Streaming for real-time data ingestion.

Kakish and Kraft [11] mainly focus on real-time data warehousing and identify dif-
ficulties and solutions in continuous ETL processing. They propose event-driven ETL
modifications, which are highly relevant to agricultural application, and require live data
ingestion from IoT sensors or market feeds. In another study, Jain and Singh [12] further ex-
plore how to enforce quality assurance within the ETL process, and they propose validation
mechanisms to maintain data consistency and accuracy.

Jia et al. [13] propose a real-time DWH architecture, where in their proposed setup they
integrate log-based change data capture (CDC) and event-driven processing to minimize
latency. Their work aligns with our approach for real-time agricultural data analytics and
stresses the need for precomputed materialized views for efficient query performance.

2.3. Spatiotemporal and Agricultural Data Warehousing

Not all data are in the same format. Agricultural data originate from various sources
and have different forms. Each data form needs to have its own specified channel and
process to be inserted into the DWH, and the data warehouse needs to be set up in such
a way that it can handle and utilize those data. The following three studies helped the
development of the frameworks to handle spatiotemporal agricultural data within the
proposed system.

Sustainability 2025, 17, 3727 4 of 19

The work of Wisnubhadra et al. [14] introduces a spatiotemporal data warehouse
for agricultural analytics, and with this setting, they address the limitations in the case of
spatial and temporal data integration. Their proposed setup can integrate open government
data and geospatial analytics, supporting our argument that DWH systems must handle
diverse agricultural datasets, including climate, soil, and market data.

Komasilovs et al. [15] design a cloud-based DWH for precision livestock farming
(PLF), in which they integrate sensor-based livestock monitoring systems. Their approach
highlights the need for automated ETL pipelines in farm management systems (FMISs), and
in doing so, it reinforces the importance of modular ETL workflows in the proposed system.

In their study, Sayed et al. [16] analyze big data architectures for agriculture in devel-
oping countries. They find that architectures that combine both batch and real-time data
processing are increasingly adopted, adding arguments on the need for flexible, scalable
and versatile systems able to handle both data ingestion types.

2.4. Big Data and IoT in Agriculture

Some agricultural data are previously created and stored in databases in a specific
form and others are created in real time. To make use of the valuable information contained
in both, the DWH needs to be adequately equipped to handle them. The following five
studies guided the approach to handling the import of real-time agricultural data and
their analysis.

El Aissi et al. [17] introduce in their work a big data architecture for smart farming,
where they combine data lakes and lambda architectures for real-time and batch data
processing. Their work supports our use of Apache Kafka, Spark, and Hadoop for scalable
agricultural analytics.

In their study, Jaiswal et al. [18] explore IoT-based smart agriculture solutions. The
focus is on low-cost sensor integration for precision farming in developing nations. They
perform real-time monitoring, cloud-based analytics, and automated decision-making, rein-
forcing the important role of the ability to support real-time agricultural data warehousing
in our system.

McCarren et al. [19] develop an agri-data warehouse for predictive analytics. In their
system, they use anomaly detection in data transformation workflows, with the goal being
to improve the forecasting accuracy for commodity prices and yields. Their work supports
our focus on the creation of automated ETL validation and having data quality assurance.

San Emeterio et al. [20] address the difficulties that derive from real-time agricultural
data management. To achieve this, they propose a spatiotemporal semantic model for
IoT-driven precision farming. Their work integrates time-series databases (InfluxDB)
and semantic middleware (DAM&DQ), and in this way, it confirms the need for real-
time agricultural decision-support systems. In a different study, San Emeterio et al. [21]
further highlight the difficulties of processing the massive real-time data coming from
precision agriculture.

Osinga et al. [22], in their work, link the potential of big data to practical farm-level
benefits. They support the necessity of tailored scalable systems, reinforcing our proposed
flexibility and modularity options.

The review of the related work summarized in Table 1 highlights the need for scalable,
real-time, and spatiotemporal-able/aware DWH architectures in agriculture. The previous
studies validate our use of the technologies and frameworks of HDFS, Hive, and Spark as a
distributed processing framework, and at the same time, they point out the necessity of ETL
optimizations, real-time data ingestion, and integration with the IoT and big data technolo-
gies. Our research builds upon these foundations, and we propose a flexible, extensible,

Sustainability 2025, 17, 3727 5 of 19

and secure agricultural DWH system that is capable of handling massive, heterogeneous
datasets for performing predictive analytics and supporting decision-making.

Table 1. Summary of the related work and the relevance to this study.

Paper Focus Area Key Contribution Technologies
Discussed

Relevance to
This Study

Yang, Ge and
Helfert [5] DWH Architecture

Identification of
9 representative

architectures
DWH architecture

Supports architecture
choice and use of

scalable DWH
frameworks

Chaudhuri and
Dayal [6] OLAP in DWH

Query optimization
strategies for big data

analytics

OLAP, MOLAP,
ROLAP

Supports choice of
Apache Hive for

analytics

Jameel et al. [7] ETL Optimization Distributed vs.
monolithic ETL Spark, Flink, Kafka

Reinforces need for
distributed ETL in

agriculture

Thesma et al. [8] Distributed Processing
Low-cost distributed
computing for cotton

phenotyping

Hadoop, distributed
clusters

Supports use of
scalable Hadoop-based
systems for agricultural

analytics

Cravero et al.
Review [9] Big Data Tools

Systematic review on
Hadoop, Hive, Spark in

agri-data
Hadoop, Hive, Spark

Validates Apache tools
as standard for
agri-big-data
processing

Vassiliadis [10] ETL Process
Survey of ETL

techniques, real-time
data integration

Apache Kafka, Spark
Streaming

Validates real-time
ingestion strategies

Kakish and Kraft [11] Real-Time Data
Integration

ETL for real-time data
streaming

Apache Kafka, Spark
Streaming

Supports real-time
analytics and

decision-making

Jain et al. [12] Near Real-Time DWH
Hybrid refresh

approach for real-time
data updates

Change data capture
(CDC), log-based ETL

Provides efficient data
refresh model for

agricultural analytics

Jia et al. [13] Real-Time DWH
RTDW architecture

with materialized view
optimization

Change data capture
(CDC), hybrid query

execution

Reinforces
event-driven ETL for
real-time agricultural

decision-making

Wisnubhadra et al. [14] Spatiotemporal DWH
Open-source

agricultural DWH with
spatial analytics

SIDeKa, OLAP
Supports spatial

integration in
agricultural DWH

Komasilovs et al. [15] Precision Livestock
Farming

Cloud-based DWH
integrating FMIS for

small-scale farms

Cloud-based data
warehouse (DW), data

vaults

Highlights modular
DWH architectures for
livestock management

Sayed et al. [16] Agri-Big-Data
Architecture

Comparative study of
batch + real-time

architectures
Hybrid frameworks

Supports combined
batch/stream
architecture in

agri-DWH systems

El Aissi et al. [17] Big Data in Agriculture
Lambda architecture

for batch and real-time
processing

Data lakes, Kafka,
Hadoop

Reinforces need for
flexible data processing

Jaiswal et al. [18] IoT in Smart
Agriculture

Low-cost, scalable IoT
framework for

developing nations

Wireless sensor nodes
(WSNs), cloud

computing

Justifies IoT integration
for data collection in

agriculture

Sustainability 2025, 17, 3727 6 of 19

Table 1. Cont.

Paper Focus Area Key Contribution Technologies
Discussed

Relevance to
This Study

McCarren et al. [19] Predictive Analytics in
Agriculture

Agri-data warehouse
integrating real-time
anomaly detection

Agri DWH, anomaly
detection, ETL

validation

Supports ETL-driven
anomaly detection for

agricultural forecasting

San Emeterio et al. [20] Spatio-Temporal Data
Management

Semantic middleware
for agricultural data

streams

InfluxDB, DAM&DQ,
AFarCloud

Supports time-series
optimization in

agricultural IoT data

San Emeterio et al. [21] IoT and Precision
Agriculture

Spatio-temporal
semantic model AFarCloud, DEMETER

Justifies
interoperability

strategies in
agricultural data

integration

Osinga et al. [22] Scalability in Agri-Data
Conceptual framework
for big data readiness

in farming
Big data systems, cloud

Justifies modular,
farm-adapted scalable

data systems

3. Materials and Methods
Based on the research that was performed and the needs of a state-of-the-art mod-

ern data warehouse (DWH), this section presents the design and implementation of our
agricultural big data DWH following the structure in Figure 1.

Sustainability 2025, 17, 3727 6 of 19

3. Materials and Methods
Based on the research that was performed and the needs of a state-of-the-art modern

data warehouse (DWH), this section presents the design and implementation of our agri-
cultural big data DWH following the structure in Figure 1.

Figure 1. Section 3’s structure.

The system can provide a scalable, efficient, and secure platform for data ingestion,
processing, and analysis. With the integration of cutting-edge distributed computing tech-
nologies, the system can handle large-scale heterogeneous agricultural datasets. Some of
these can be real-time IoT sensor readings, satellite imagery, climate models, and market
transactions. Table 2 presents all the tools and technologies that comprise the proposed
agricultural big data DWH.

Table 2. Summary of all the used tools.

 Tool Purpose

Data Ingestion and ETL
Extract, transform, and

load (ETL) data from vari-
ous sources.

Apache Sqoop Extracts structured data from relational databases and loads it into HDFS.

Apache Flume
Ingests semi-structured and log-based data, commonly used for IoT logs and event

data.

Apache Kafka
Handles real-time streaming data ingestion from IoT sensors and external agricul-

tural feeds.
Apache Spark

Streaming
Processes real-time data streams in parallel for real-time analytics.

Apache Airflow Manages workflow automation and scheduling for ETL processes.

Storage and Processing
Store and process large-
scale agricultural data.

Hadoop Distributed
File System (HDFS)

Provides fault-tolerant, distributed storage for large datasets.

Apache Spark
High-performance in-memory computing for batch processing, transformations,

and machine learning.

Figure 1. Section 3’s structure.

The system can provide a scalable, efficient, and secure platform for data ingestion,
processing, and analysis. With the integration of cutting-edge distributed computing
technologies, the system can handle large-scale heterogeneous agricultural datasets. Some

Sustainability 2025, 17, 3727 7 of 19

of these can be real-time IoT sensor readings, satellite imagery, climate models, and market
transactions. Table 2 presents all the tools and technologies that comprise the proposed
agricultural big data DWH.

The following subsections provide a detailed breakdown of the system’s components
(Table 1), which execute the data-ingestion processes, the storage and query optimization
strategies, and the scalability mechanisms; apply the security framework; and allow for
predictive analytics models, which together create a high-performance, extensible, and
robust agricultural data warehouse solution.

Table 2. Summary of all the used tools.

Tool Purpose

Data Ingestion and ETL
Extract, transform, and load (ETL) data

from various sources.

Apache Sqoop Extracts structured data from relational
databases and loads it into HDFS.

Apache Flume
Ingests semi-structured and log-based
data, commonly used for IoT logs and

event data.

Apache Kafka
Handles real-time streaming data

ingestion from IoT sensors and external
agricultural feeds.

Apache Spark Streaming Processes real-time data streams in
parallel for real-time analytics.

Apache Airflow Manages workflow automation and
scheduling for ETL processes.

Storage and Processing
Store and process large-scale

agricultural data.

Hadoop Distributed File System (HDFS) Provides fault-tolerant, distributed
storage for large datasets.

Apache Spark
High-performance in-memory

computing for batch processing,
transformations, and machine learning.

Apache Hive SQL-like query processing for structured
agricultural data stored in HDFS.

Apache YARN
Manages and optimizes cluster resources,

balancing workloads between Spark,
Hive, and ingestion tasks.

Query and Analytics
Querying, visualization, and

monitoring of the DWH.

Apache Superset Business intelligence tool for creating
dashboards and interactive analytics.

Grafana Real-time monitoring and visualization
of agricultural data.

Precomputed Materialized Views Optimizes query performance by storing
frequently accessed aggregations.

Indexing strategies Optimizes query performance.

Security and Access Control
Authentication, authorization,

and compliance.

Role-Based Access Control (RBAC)
Implements fine-grained user

authentication and data
access permissions.

Data Encryption Protects sensitive agricultural data.

Containerization and Orchestration
Deploy, scale, and manage the entire

DWH system.

Docker Containerizes all components, ensuring
portability and modularity.

Portainer Provides a lightweight web-based UI for
managing Docker containers.

Sustainability 2025, 17, 3727 8 of 19

Table 2. Cont.

Tool Purpose

Supporting Databases
Store metadata and manage

schema definitions.

PostgreSQL
Stores metadata for Apache Hive

Metastore and external
transactional data.

Apache Hive Metastore Manages metadata for Hive and
Spark tables.

Machine Learning and
Advanced Analytics

Predictive analytics, anomaly detection,
and AI-driven insights.

Apache Spark MLlib
Runs machine learning models (e.g.,

ARIMA, LSTMs) for yield forecasting and
price predictions.

Python 3.10, ML Stack (Scikit-Learn,
TensorFlow, PyTorch 2.1)

Supports AI-driven insights, anomaly
detection, and predictive modeling.

3.1. Data Ingestion and ETL Processes

The first and critical step is efficient data ingestion and transformation. The proposed
system applies a hybrid extract, transform, load (ETL) process to handle structured, semi-
structured, and unstructured data. It also integrates both batch processing for historical
data and real-time streaming for dynamic datasets. The ETL framework makes sure that
there is consistency, accuracy, and usability of data by leveraging Apache Sqoop, Apache
Flume, Apache Kafka, Apache Spark Streaming, and Apache Hive.

3.1.1. Data Sources and Categories

Agricultural data can originate from a vastly diverse range of sources. Each of these
sources requires specific specialized ingestion techniques. Our system categorizes the data
sources in three ways. First there are structured data, which relational databases (e.g.,
PostgreSQL, MySQL) carry, containing market transactions, historical crop yields, policy
data, etc. Then, there are semi-structured data, like CSV/JSON/XML-based meteorological
reports, governmental agricultural datasets, and supply chain data. A third variation
is unstructured data, as from IoT sensor readings (soil moisture, temperature), satellite
imagery, and drone-captured field data. Each type of data requires its own optimized
extraction method to ensure that the data are efficiently stored and retrieved.

3.1.2. ETL Process Design

The hybrid ETL pipeline consists of three key stages. The first stage is data extraction,
in which data are retrieved from various sources using specialized tools. Apache Sqoop
extracts structured data from relational databases and transfers it to HDFS. Apache Flume
ingests semi-structured and log-based data streams, commonly used for IoT logs and event-
based data. Apache Kafka and Spark-Streaming facilitate real-time ingestion, streaming
high-velocity data from IoT sensors and external agricultural feeds.

The second stage is data transformation, in which raw data undergo preprocessing,
validation, and enrichment. Apache Spark performs distributed in-memory transforma-
tions to clean, normalize, and aggregate data. Feature extraction techniques are applied
to sensor and climate data to ensure compatibility with analytical models. Data quality
checks (deduplication, anomaly detection) are embedded in Spark’s transformation phase.

The third stage is data loading, in which the processed data are stored and made
available for querying and analysis. Batch data that have been processed are loaded into
Apache Hive, enabling OLAP-style queries for trend analysis and decision-making. Real-
time data like sensor-based streaming data are continuously updated in pre-aggregated
tables using Kafka-to-Hive integration.

Sustainability 2025, 17, 3727 9 of 19

Real-time ingestion techniques use Kafka and Spark to handle the data that arrive late,
to help maintain consistency. Kafka retains data for a preset duration, allowing Spark to
reprocess delayed records. Using a “watermarking” mechanism, Spark ensures that the
late-arriving data will be correctly assigned to the original time interval.

3.1.3. Real-Time and Batch Processing Data

The system makes a distinction in the handling of batch and real-time data to op-
timize performance. Batch processing is suitable for large-scale historical datasets like
market trends, and policy data updates. Sqoop and Spark are being utilized to handle
batch processing efficiently. Real-time streaming data are the continuously incoming data
provided by sensors, real-time pricing updates, and climate monitoring. Kafka and Spark
Streaming process and analyze these real-time data streams in near real time and provide
decision-makers with up-to-date insights.

3.1.4. Performance Optimization in ETL

Using Hive, large datasets can be partitioned and indexed. Hive partitions these
large datasets based on various criteria (by time, region, and data type), and this greatly
reduces the query response times. Furthermore, by caching frequently accessed queries,
redundant computations are minimized, and this enhances performance (materialized
views are precomputed). Finally, Spark-based machine learning models monitor and detect
outliers, anomalies, and inconsistencies in incoming data streams.

3.1.5. ETL Automation and Orchestration

To streamline the ETL workflows and avoid manual intervention as much as possible,
the proposed system uses Apache Airflow, which automates and performs the scheduled
ETL jobs and ensures the systematic data ingestion. Also, Dockerized deployment makes
the DWH scalable. All the ETL components run in Docker containers, managed and moni-
tored through Portainer. This makes the setting easy to expand as additional needs arise.
Moreover, Grafana and Superset provide dashboards for ETL monitoring and logging of
performance enabling troubleshooting. This robust ETL pipeline warrants that the agricul-
tural data are consistently ingested, transformed, and made available for analytics. Thus,
our system supports stakeholders in decision-making across the agricultural supply chain.

3.2. Data Warehouse (DWH) Architecture Design

The proposed data warehouse (DWH) is designed to be scalable, fault tolerant, high
performing, and able to manage recourses efficiently. It also integrates data seamlessly with
the integration of batch data and real-time data. It provides optimal query performance,
and it enables advanced analytics. The system follows a modular, containerized approach.

The architecture is structured around the following six core functional components.

3.2.1. Scalable and Fault-Tolerant Storage (HDFS)

As the basis of the DWH’s storage layer there is the Hadoop Distributed File System
(HDFS). HDFS is optimized for big data storage and provides fault tolerance. In HDFS,
the data are automatically replicated in multiple nodes to prevent data loss in case of
failures (Figure 2). This process of replication is what makes the DWH fault tolerant.
Additionally, the ability to add new nodes as needed to accommodate increasing data
volumes, which makes the system highly scalable. HDFS is designed for storage and
retrieval of datasets that are very large. Datasets like climate models, IoT sensor logs, and
satellite imagery. To increase flexibility, in the DWH setting proposed, HDFS is deployed
within Dockerized containers. This allows for the storage management to be easily be
scaled across different environments.

Sustainability 2025, 17, 3727 10 of 19

Sustainability 2025, 17, 3727 9 of 19

3.2. Data Warehouse (DWH) Architecture Design

The proposed data warehouse (DWH) is designed to be scalable, fault tolerant, high
performing, and able to manage recourses efficiently. It also integrates data seamlessly
with the integration of batch data and real-time data. It provides optimal query perfor-
mance, and it enables advanced analytics. The system follows a modular, containerized
approach.

The architecture is structured around the following six core functional components.

3.2.1. Scalable and Fault-Tolerant Storage (HDFS)

As the basis of the DWH’s storage layer there is the Hadoop Distributed File System
(HDFS). HDFS is optimized for big data storage and provides fault tolerance. In HDFS,
the data are automatically replicated in multiple nodes to prevent data loss in case of fail-
ures (Figure 2). This process of replication is what makes the DWH fault tolerant. Addi-
tionally, the ability to add new nodes as needed to accommodate increasing data volumes,
which makes the system highly scalable. HDFS is designed for storage and retrieval of
datasets that are very large. Datasets like climate models, IoT sensor logs, and satellite
imagery. To increase flexibility, in the DWH setting proposed, HDFS is deployed within
Dockerized containers. This allows for the storage management to be easily be scaled
across different environments.

Figure 2. Graphical representation of HDFS (This figure is an original illustration created by the
authors to depict the structure of HDFS as applied in our system. While the design is inspired by
standard architecture diagrams from Apache documentation, we have adapted it to highlight the
components relevant to our implementation. The figure does not affect scientific understanding and
aims to enhance clarity).

3.2.2. Resource Management and Workload Optimization (YARN)

High-performance processing is based in efficient resource allocation. The DWH sys-
tem uses Yet Another Resource Negotiator (YARN) to manage and distribute computing
resources, and it does so dynamically (Figure 3). With YARN, the system can have the
optimal CPU and memory utilization for all workloads; it can support concurrent data
ingestion, processing, and analytics tasks; and it can efficiently balance both batch and
real-time workloads with low-latency query execution. YARN integrates with Apache

Figure 2. Graphical representation of HDFS (This figure is an original illustration created by the
authors to depict the structure of HDFS as applied in our system. While the design is inspired by
standard architecture diagrams from Apache documentation, we have adapted it to highlight the
components relevant to our implementation. The figure does not affect scientific understanding and
aims to enhance clarity).

3.2.2. Resource Management and Workload Optimization (YARN)

High-performance processing is based in efficient resource allocation. The DWH
system uses Yet Another Resource Negotiator (YARN) to manage and distribute computing
resources, and it does so dynamically (Figure 3). With YARN, the system can have the
optimal CPU and memory utilization for all workloads; it can support concurrent data
ingestion, processing, and analytics tasks; and it can efficiently balance both batch and
real-time workloads with low-latency query execution. YARN integrates with Apache
Spark and Hive and ensures that distributed processing tasks are executed without re-
source bottlenecks.

Sustainability 2025, 17, 3727 10 of 19

Spark and Hive and ensures that distributed processing tasks are executed without re-
source bottlenecks.

Figure 3. Graphical representation of YARN (This figure is an original illustration created by the
authors to depict the structure of HDFS as applied in our system. While the design is inspired by
standard architecture diagrams from Apache documentation, we have adapted and simplified it to
highlight the components relevant to our implementation. The figure does not affect scientific un-
derstanding and aims to enhance clarity.).

3.2.3. Data Ingestion and Integration (Apache Sqoop, Apache Flume, Apache Kafka)

Agricultural datasets are, by their very nature, diverse, coming from various hetero-
geneous sources. To handle such data, the system applies a hybrid ingestion model. This
approach allows the DWH to take data both in batches (historical data) and from real-time
streaming sources (continuously generated datasets).

To ingest batch data, the system uses Apache Sqoop. With Sqoop, structured data can
be extracted from relational databases (e.g., PostgreSQL, MySQL). For large agricultural
records (e.g., market prices, government policy data), the input process can be parallelized
to facilitate faster import times. Additionally, Sqoop reduces data duplication with the
support of incremental loading.

For real-time streaming data, the system uses Apache Flume and Apache Kafka.
Flume is used to import semi-structured data that originate from IoT sensor logs or satel-
lite image metadata. Kafka is used to manage high-velocity streaming data, supporting
event-driven triggered data creation. Spark Streaming is used to process the Kafka
streams, allowing for real-time analytics on weather patterns, soil conditions, and market
fluctuations.

Since a part of agricultural data are of a spatiotemporal nature, the proposed system
is designed to efficiently handle them. Apache Hive can partition time-series data and
Apache Spark can perform distributed spatial processing. This setting can also support
geospatial analytics for climate and soil data. Agricultural decision-makers, from policy-
makers to agro-commodity traders, can analyze data with both temporal and spatial di-
mensions for more informed insights.

With this setting, the system offers seamless integration of batch and real-time data
and gives users that are decision-makers the ability to access both historical trends and
live insights.

Figure 3. Graphical representation of YARN (This figure is an original illustration created by the
authors to depict the structure of HDFS as applied in our system. While the design is inspired by
standard architecture diagrams from Apache documentation, we have adapted and simplified it
to highlight the components relevant to our implementation. The figure does not affect scientific
understanding and aims to enhance clarity).

Sustainability 2025, 17, 3727 11 of 19

3.2.3. Data Ingestion and Integration (Apache Sqoop, Apache Flume, Apache Kafka)

Agricultural datasets are, by their very nature, diverse, coming from various hetero-
geneous sources. To handle such data, the system applies a hybrid ingestion model. This
approach allows the DWH to take data both in batches (historical data) and from real-time
streaming sources (continuously generated datasets).

To ingest batch data, the system uses Apache Sqoop. With Sqoop, structured data can
be extracted from relational databases (e.g., PostgreSQL, MySQL). For large agricultural
records (e.g., market prices, government policy data), the input process can be parallelized
to facilitate faster import times. Additionally, Sqoop reduces data duplication with the
support of incremental loading.

For real-time streaming data, the system uses Apache Flume and Apache Kafka. Flume
is used to import semi-structured data that originate from IoT sensor logs or satellite image
metadata. Kafka is used to manage high-velocity streaming data, supporting event-driven
triggered data creation. Spark Streaming is used to process the Kafka streams, allowing for
real-time analytics on weather patterns, soil conditions, and market fluctuations.

Since a part of agricultural data are of a spatiotemporal nature, the proposed system is
designed to efficiently handle them. Apache Hive can partition time-series data and Apache
Spark can perform distributed spatial processing. This setting can also support geospatial
analytics for climate and soil data. Agricultural decision-makers, from policymakers to
agro-commodity traders, can analyze data with both temporal and spatial dimensions for
more informed insights.

With this setting, the system offers seamless integration of batch and real-time data
and gives users that are decision-makers the ability to access both historical trends and
live insights.

3.2.4. High-Performance Batch Processing (Apache Spark)

Apache Spark is the basic ETL engine. Spark can process distributed data and perform
batch and real-time transformations. Spark processes data 10–100× faster than the tradi-
tional MapReduce through the ability to perform in-memory processing. It also handles the
cleaning, normalization and feature engineering of agricultural datasets. Spark additionally
supports predictive analytics with the integration of machine learning algorithms. This
can be used by decision-makers for price forecasting, yield prediction, and climate impact
analysis. Additionally, Spark can run across distributed clusters, which is what gives
scalability to the system.

3.2.5. Optimized Query Processing (Apache Hive)

Apache Hive has a query interface connected to the DWH, and it allows users to
execute analytical queries on large datasets. Hive uses an SQL-like query language (HQL),
enabling users to write queries using familiar SQL syntax. It optimizes query performance
by partitioning and indexing. This is the process of segmenting data based on various
selected criteria, which greatly enhances performance. Hive allows the use of precomputed
materialized views. This is the ability to store frequently accessed aggregations to reduce
the query execution time. Lastly, Hive enables distributed query execution, with Spark’s
in-memory processing, producing faster results.

3.2.6. Containerization and Orchestration (Docker and Portainer)

The system is deployed in containers, using Docker and managed with Portainer, to
provide modularity, ease of deployment, and scalability. Each container has one or more of
the software components of the DWH in a separate Linux environment. The Dockerized
deployment ensures that more nodes can be added across cloud and on-premises setups,

Sustainability 2025, 17, 3727 12 of 19

allowing for more computing power and storage (horizontal scaling). The use of Portainer
for management provides a web-based interface for monitoring and handling these Docker
containers. Having each software component in a separate container makes it easy to
update, restart, or replace them without totally disrupting system operations.

3.2.7. Machine Learning and Advanced Analytics

Finally, the proposed system can perform advanced predictive analytics, detect anoma-
lies, and offer decision-support mechanisms. This is achieved by utilizing machine learning
(ML) models (for forecasting agricultural trends, price movements, and climate risks) from
Apache Spark’s MLlib or Pythons ML stack (Scikit-Learn, TensorFlow, PyTorch) and vari-
ous other common ML models (ARIMA, LSTMs, etc.). Anomaly detection techniques are
embedded through Apache Kafka in the data input phase and through Hive with periodic
batch anomaly detection running on historical data within the ETL pipeline to identify
inconsistencies and ensure data integrity. Grafana and Apache Superset allow for access to
visual dashboards that provide farmers, policymakers, and agribusiness stakeholders with
actionable insights derived from the vast amounts of agricultural data collected.

To avoid slowing down the system, the ML models can be trained in batch mode and
then deployed only after optimization. The models can be scheduled to run separately from
core data operations, triggered either periodically or based on data ingestion. This plan
ensures that predictive analytics are included without affecting the system’s performance
(particularly during highly resource-demanding operations).

3.3. Development Approach

A modular and iterative development approach has been followed to ensure system
flexibility and extensibility, while at the same time allowing for step-by-step verification
that each phase’s components are fully functional. For the proposed DWH, the model of
continuous integration and deployment (CI/CD) has been followed. With Docker-based
deployment, every component (HDFS, Spark, Hive) runs in containerized environments,
making scaling an easy process. The development is iterative to align with evolving
agricultural data needs. Using this methodology, the system’s functionality can continually
be verified, and the DWH is kept in sync with the ongoing requirements. To achieve this,
the DWH setting has been separated into 3 distinct phases. In Phase 1, we complete the
initial DWH setup with the core HDFS, Hive, and Spark. In Phase 2, we perform the
integration of Kafka and Flume for data ingestion. In Phase 3, we perform the optimization
via query indexing, caching, and implementation of machine learning pipelines.

3.4. System Security and Data Access Control

Security and data protection are two major components of the proposed DWH system.
To make the DWH secure and able to handle sensitive personal data, strict access control
is run so the system adheres to data protection regulations. Passwords are required for
all user accounts, and users will be denied or granted access to data based upon their
assigned role. This guarantees that only permitted users can access sensitive data. The
DWH will also make use of role-based access control (RBAC), in which there are access
levels that will be set for various users. This helps prevent unauthorized access to critical
data and ensures that each user can only access the data relevant to their role within the
system. With the addition of storage encryption, we ensure compliance with data protection
regulations, and we safeguard sensitive agricultural datasets. In more detail, RBAC is
implemented throughout the data pipeline by assigning permissions to predefined roles.
User roles, such as analysts, admins, engineers, and external auditors, are granted access
only to the data and processes that are relevant to the role’s responsibilities, ensuring
that sensitive information is protected. Data encryption is applied both at rest and in

Sustainability 2025, 17, 3727 13 of 19

transit. The HDFS blocks are encrypted using AES-256 with Hadoop’s encryption feature.
The communication between services (Kafka, Spark, Hive) is secured utilizing SSL/TLS
protocols. These measures support compliance with data protection frameworks, such as
the GDPR.

3.5. Technology Selection

During the design phase of the proposed system, our choices were guided by attempts
to ensure great performance, integration flexibility, and large community support. Apache
Hive was selected over Presto due to its stronger compatibility with batch-oriented ETL
processes and greater integration with the HDFS protocol. Spark was chosen over Jlink for
the widely used and mature machine learning library MLlib integration and the great com-
munity documentation and support. Docker was chosen over the powerful orchestration
offerings of Kubernetes for the prototype phase for the simplicity and faster deployment
that a small to medium cluster environment needs. These selections make for a foundation
that is both flexible and scalable and can modularly be replaced as future needs arise.

4. Results
The implementation of the proposed agricultural big data warehouse manages to

successfully integrate all the parts that are necessary for a robust and scalable system that
is able to handle massive, diverse datasets and enable users to perform data analytics.
Figure 4 graphically presents the resulting setup from the application of the tools and
software that have been discussed in Section 3.

Sustainability 2025, 17, 3727 13 of 19

Figure 4 graphically presents the resulting setup from the application of the tools and
software that have been discussed in Section 3.

Figure 4. Graphical representation of the proposed agricultural data warehouse architecture (au-
thors’ own work).

The use of Apache Sqoop, Flume, Kafka, Spark-Streaming, and Airflow in the data
ingestion and ETL phase make the extraction, ingestion, scheduling, handling and pro-
cessing of data highly efficient and capable of managing highly varied data source inputs.

HDFS, YARN, Hive, and Spark, used for storage and processing, lead to the high-
performance, fault-tolerant storage of the agricultural data.

Apache Superset, alongside Grafana, with the additional implementation of precom-
puted materialized views and indexing strategies, provides the end user with real-time
monitoring and optimized performance in their effort to obtain interactive analytical re-
sults.

The enforcement of user authentication through role-based access control, and data
encryption, keeps the sensitive agricultural datasets protected.

The containerized deployment through Docker ensures portability and modularity,
while the use of Portainer allows for uncomplicated management of the Docker contain-
ers. Also, the use of Docker in combination with HDFS allows for growth of the DWH
system based on the data needs.

The integration of Apache Spark MLlib and Python ML Stack supports AI-driven
insights and application of state-of-the-art predictive and analytics algorithms.

Finally, the iterative development approach that was followed ensures the ability to
continuous refine all the DWH components.

Figure 4. Graphical representation of the proposed agricultural data warehouse architecture (authors’
own work).

The use of Apache Sqoop, Flume, Kafka, Spark-Streaming, and Airflow in the data in-
gestion and ETL phase make the extraction, ingestion, scheduling, handling and processing
of data highly efficient and capable of managing highly varied data source inputs.

Sustainability 2025, 17, 3727 14 of 19

HDFS, YARN, Hive, and Spark, used for storage and processing, lead to the high-
performance, fault-tolerant storage of the agricultural data.

Apache Superset, alongside Grafana, with the additional implementation of precom-
puted materialized views and indexing strategies, provides the end user with real-time
monitoring and optimized performance in their effort to obtain interactive analytical results.

The enforcement of user authentication through role-based access control, and data
encryption, keeps the sensitive agricultural datasets protected.

The containerized deployment through Docker ensures portability and modularity,
while the use of Portainer allows for uncomplicated management of the Docker containers.
Also, the use of Docker in combination with HDFS allows for growth of the DWH system
based on the data needs.

The integration of Apache Spark MLlib and Python ML Stack supports AI-driven
insights and application of state-of-the-art predictive and analytics algorithms.

Finally, the iterative development approach that was followed ensures the ability to
continuous refine all the DWH components.

4.1. Query Performance Benchmarks

A series of benchmarking experiments were conducted on the proposed system, using
demo datasets that had been created. The data simulated typical agricultural parameters,
and they included timestamps, locations, temperature, soil moisture, and yield estimates.
The manufactured datasets contained 100,000, 1 million, and 10 million rows. Using
Python3, Pandas, and Numpy, sensor data were created with the following script.

import pandas as pd
import numpy as np

def generate_csv(rows, filename):
df = pd.DataFrame({
‘ts’: pd.to_datetime(np.random.randint(1672531200, 1704067200, size=rows), unit=‘s’),
‘location’: np.random.choice([‘Field_A’, ‘Field_B’, ‘Field_C’], rows),
‘soil_moisture’: np.random.uniform(10, 40, rows),
‘temperature’: np.random.uniform(15, 35, rows),
‘yield_estimate’: np.random.randint(200, 500, rows)
})

df.to_csv(filename, index=False)
print(f“{filename} created with {rows:,} rows.”)

generate_csv(100000, “agri_data_100K.csv”)
generate_csv(1000000, “agri_data_1M.csv”)
generate_csv(10000000, “agri_data_10M.csv”)

A set of representative queries, including the full row counts, group-by aggregations,
filtered aggregations, and top-k retrievals, provided the execution times used to record the
scalability behavior of the system. Table 3 presents the results and the queries used for the
three different dataset sizes. The system handled the most demanding queries in under
45 s and the less demanding ones in under 2 s.

In addition to the query performance, the ingestion time was also evaluated to assess
how the system responds to data uploads. The three CSV files of increasing size were
ingested in the data warehouse pipeline by executing the “LOAD DATA LOCAL INPATH”
command via Hive. The 100,000-row file was ingested in 0.577 s, the 1-million-row file in

Sustainability 2025, 17, 3727 15 of 19

0.847 s, and the 10-million-row file in 3.162 s. The system displayed the ability to handle
growing data volumes with minimal delay.

Table 3. Execution performance summary.

Query Description SQL Query Execution Time (s) Dataset Size Purpose

Total Row Count SELECT COUNT(*)
FROM agri_data_100K; 1.675 100 K Validates ingestion and

basic query scalability.

Total Row Count SELECT COUNT(*)
FROM agri_data_1M; 1.629 1 M Validates ingestion and

basic query scalability.

Total Row Count SELECT COUNT(*)
FROM agri_data_10M; 7.634 10 M Validates ingestion and

basic query scalability.

Average Yield Estimate
per Location

SELECT location,
AVG(yield_estimate)

FROM agri_data_100K
GROUP BY location;

1.738 100 K
Tests group-by

aggregation on a
medium dataset.

Average Yield Estimate
per Location

SELECT location,
AVG(yield_estimate)
FROM agri_data_1M
GROUP BY location;

2.635 1 M
Tests group-by

aggregation on a
large dataset.

Average Yield Estimate
per Location

SELECT location,
AVG(yield_estimate)

FROM agri_data_10M
GROUP BY location;

15.653 10 M
Tests group-by
aggregation at

high scale.

Average Soil Moisture with
Condition (temp > 25)

SELECT location,
AVG(soil_moisture)

FROM agri_data_100K
WHERE temperature >
25 GROUP BY location;

1.742 100 K
Tests conditional

filtering + aggregation
on moderate data.

Average Soil Moisture with
Condition (temp > 25)

SELECT location,
AVG(soil_moisture)

FROM agri_data_1M
WHERE temperature >
25 GROUP BY location;

3.647 1 M
Tests conditional

filtering + aggregation
on large data.

Average Soil Moisture with
Condition (temp > 25)

SELECT location,
AVG(soil_moisture)

FROM agri_data_10M
WHERE temperature >
25 GROUP BY location;

29.726 10 M
Tests complex filtering

and aggregation at
high scale.

Top 10 Rows by
Yield Estimate

SELECT * FROM
agri_data_100K

ORDER BY
yield_estimate DESC

LIMIT 10;

1.645 100 K
Validates performance

of sorting and
top-k selection.

Top 10 Rows by
Yield Estimate

SELECT * FROM
agri_data_1M ORDER

BY yield_estimate
DESC LIMIT 10;

5.598 1 M
Validates performance

of sorting and
top-k selection.

Top 10 Rows by
Yield Estimate

SELECT * FROM
agri_data_10M ORDER

BY yield_estimate
DESC LIMIT 10;

44.724 10 M
Validates performance

of sorting and top-k
selection at large scale.

4.2. Use Case Illustration: Yield Estimation Query

As a demonstration of the possible practical application of the system, we constructed a
use case where the average yield estimation per field was simulated. Using Hive, we executed:

Sustainability 2025, 17, 3727 16 of 19

SELECT location, AVG (yield_estimate) FROM agri_data_1M GROUP BY location;
This query processed over 1 million records in approximately 2.6 s, showcasing the

value of the system’s analytical capabilities for decision-makers who need real-time insights
into field productivity.

4.3. Fault Tolerance Tests

The system was tested for fault tolerance by conducting the following fault injection
experiments on the key components of the data pipeline. While a long-running aggregation
query was active, the hive server was forcefully stopped and restarted. As expected, the
query failed without corrupting the metadata or impacting other services. Upon restart,
all the following queries ran normally, confirming Hive’s ability to recover with minimal
to no disruption. To test HDFS, a DataNode was terminated during an active query. With
the HDFS replication set to the default three nodes, the system retrieved data blocks from
replica nodes and the query completed successfully, demonstrating HDFS’s tolerance to
node failures. Lastly, after forced shutdowns and restarting the entire Docker cluster, all
the previously ingested and queried datasets, alongside all the table structures, remained
available, verifying that persistent volumes and metadata were preserved.

5. Discussion
The implementation of a data warehouse (DWH) is the only available option for when

datasets are massive. Traditional relational database management systems (RDBMSs) have
limited abilities for scaling and handling unstructured data. They are primarily designed
for transactional processing (OLTP) and struggle with large-scale analytical workloads
(OLAP) because they do not apply distributed storage and parallel processing in the
same way a DWH functions. Additionally, they are not optimized for semi-structured
and unstructured data from sources such as IoT devices or satellite imagery. Although
conventional databases excel in handling structured transactional data, DWHs are designed
for large-scale analytical processing, and they could integrate diverse data sources through
optimized extract, transform, load (ETL) workflows, futureproofing in terms of further
data collection and storing. The heterogeneity of agricultural data, which originate from
diverse sources such as IoT sensors, satellite imagery, and market transactions, highlights
the necessity of a DWH solution in the agricultural domain.

The increasing volume, velocity, and variety of data call for modern architectures such
as the proposed data warehouse (DWH) to ensure efficient data management and utilization.
The traditional storage and processing infrastructures are inadequate to meet the growing
data demands. Therefore, organizations must invest in scalable, high-performance solutions
to fully leverage big data for decision-making and operational efficiency [23]. There is
a great need for robust big data analytics capabilities (BDACs) to manage and extract
valuable insights from these vast datasets, and in this way, to ensure that organizations
move forward in the way of sustainable innovation and organizational competitiveness [24].
Furthermore, as industries increasingly rely on big data for decision-making, the ability
to integrate and process these vast information streams is becoming a key determinant of
innovation performance [25].

However, despite the unquestionable benefits of a DWH, the decision to implement
one must be carefully evaluated by weighing the complexity of the system and the actual
data requirements. The distributed storage, the multi-stage query execution, and the
container communication cause an overhead that means that a DWH may not always
be the optimal choice for smaller datasets. When dealing with moderate-sized datasets,
which are in the order of millions rather than petabytes of records, an out-of-the-box
relational database may provide faster query performance with a significantly lower setup

Sustainability 2025, 17, 3727 17 of 19

configuration. The modular and containerized architecture of a DWH introduces inherent
latency, as multiple processes need to interact across distributed components to execute a
single query.

Furthermore, to implement a high-performance DWH, it is required that experts in
a diverse set of domains, like distributed computing, container orchestration, security
frameworks, and real-time processing technologies, work together to achieve it. Without
careful planning, the system may face inefficiencies, leading to suboptimal performance
even with the use of state-of-the-art tools. Therefore, organizations must assess whether
their data needs justify the required effort and use of resources of a DWH before proceeding
with its deployment.

Despite these challenges, the proposed DWH architecture provides a scalable and
efficient solution for managing agricultural big data. By leveraging the power of Apache
Spark, Hive, and HDFS, alongside the other proposed software components, the system
ensures efficient query execution, real-time analytics, and fault tolerance.

To accommodate smaller farms and stakeholders with limited technical resources, the
system was designed to be modular and Docker-based. A minimal deployment can be
set up on a single-node server by a skilled system administrator relatively fast. In this
simplified version, the overall cost of the deployment and maintenance of the system would
be the administrator’s wage and the PC that would be used as a server for the system,
which would be different based on several factors, like the country, the administrator’s
skills, etc. Acknowledging that this can still be a cost that a small farm cannot manage, the
system can be shared by more than one entity, with separate access and rights for each.
This way, the cost would be also shared. The system has the flexibility to scale down to
local deployments or scale up to region-level application.

Our proposed system was benchmarked with datasets of up to 10 million records,
but full-scale stress tests with high frequency real-time data streams ingestion remain a
topic for future work. Although the architecture is designed to scale by adding nodes and
computing resources, we recognize that bottlenecks may arise in the disk I/O, memory, or
network saturation. In future deployments, we plan to stress test the system under realistic
streaming workloads to quantify the performance barriers.

Future optimizations may focus on improving the communication efficiency between
containers and refining the indexing strategies to further reduce the query latency, making
sure that the DWH continues to meet the ever-evolving data demands in agricultural
research and decision-making.

Author Contributions: Software, A.T.; validation, K.M. and S.A.N.; writing—original draft prepara-
tion, A.T.; writing—review and editing, S.A.N., M.T. and S.R.-P.; supervision, K.M. and S.A.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union under the Horizon Europe H2020 grant
for the BIOVALUE project, grant number 101000499, “Fork-to-farm agent-based simulation tool
augmenting BIOdiversity in the agri-food VALUE chain”. This work does not necessarily reflect the
view of the EU and in no way anticipates the Commission’s future policy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: We would like to thank Konstantinos Theofilou for his invaluable help and
guidance in the implementation and design of the proposed agricultural big data DWH solution.

Sustainability 2025, 17, 3727 18 of 19

Conflicts of Interest: Author S.R.-P. was employed by the company IDENER. The remaining authors
declare that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DWH Data Warehouse
RDBMS Relational Database Management System
HDFS Hadoop Distributed File System
DBMS Database Management System
OLTP Online Transactional Process
OLAP Online Analytical Process
ROLAP Relational Online Analytical Process
MOLAP Multidimensional Online Analytical Process
HOLAP Hybrid Online Analytical Process
ETL Extraction Transformation Loading
RBAC Role-Based Access Control
CDC Change Data Capture
IoT Internet of Things
PLF Precision Livestock Farming
FMIS Farm Management System
RTDW Real-Time Data Warehouse
WSNs Wireless Sensor Nodes
UI User Interface
SQL Sequel Query Language
ML Machine Learning
AI Artificial Intelligence
YARN Yet Another Resource Negotiator
CPU Central Processing Unit
HQL Hive Query Language
CI/CD Continuous Integration and Continuous Deployment
BDAC Big Data Analytics Capabilities

References
1. Agarwal, I.; Rana, D.; Shah, P.; Dude, A.; Patel, P. Optimizing Crop Monitoring: A Data Warehouse Approach in Precision Agri-

culture. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies
(ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–7. [CrossRef]

2. Ngo, V.M.; Duong, T.V.T.; Nguyen, T.B.T.; Dang, C.N.; Conlan, O. A big data smart agricultural system: Recommending optimum
fertilizers for crops. Int. J. Inf. Tecnol. 2023, 15, 249–265. [CrossRef]

3. Rana, H.; Farooq, M.U.; Kazi, A.K.; Baig, M.A.; Akhtar, M.A. Prediction of Agricultural Commodity Prices using Big Data
Framework. Eng. Technol. Appl. Sci. Res. 2024, 14, 12652–12658. [CrossRef]

4. Mutia, I.; Sitanggang, I.S.; Annisa, A.; Astuti, D.A. Application of Spatial Data Warehouse for Agriculture: Challenge and Future
Trends. In Proceedings of the 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Depok,
Indonesia, 14–15 September 2021; pp. 277–282. [CrossRef]

5. Yang, Q.; Ge, M.; Helfert, M. Analysis of Data Warehouse Architectures: Modeling and Classification. In Proceedings of the
21st International Conference on Enterprise Information Systems, Heraklion, Greece, 3–5 May 2019; Science and Technology
Publications, Lda: Setúbal, Portugal, 2019. [CrossRef]

6. Dayal, U.; Chaudhuri, S. An Overview of Data Warehousing and OLAP Technology. SIGMOD Rec. (ACM Spec. Interes. Gr. Manag.
Data) 1997, 26, 65–74. [CrossRef]

7. Jameel, K.; Adil, A.; Bahjat, M. Analyses the performance of data warehouse architecture types. J. Soft Comput. Data Min. 2022, 3,
45–57, Penerbit UTHM: Batu Pahat, Malaysia. [CrossRef]

8. Thesma, V.; Rains, G.C.; Mohammadpour Velni, J. Development of a Low-Cost Distributed Computing Pipeline for High-
Throughput Cotton Phenotyping. Sensors 2024, 24, 970. [CrossRef] [PubMed]

https://doi.org/10.1109/ICCCNT61001.2024.10724191
https://doi.org/10.1007/s41870-022-01150-1
https://doi.org/10.48084/etasr.6468
https://doi.org/10.1109/IC2IE53219.2021.9649399
https://doi.org/10.5220/0007728006040611
https://doi.org/10.1145/248603.248616
https://doi.org/10.30880/jscdm.2022.03.01.005
https://doi.org/10.3390/s24030970
https://www.ncbi.nlm.nih.gov/pubmed/38339687

Sustainability 2025, 17, 3727 19 of 19

9. Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic
Literature Review. Agronomy 2022, 12, 748. [CrossRef]

10. Vassiliadis, P. A survey of extract–transform–load technology. Int. J. Data Warehous. Min. (IJDWM) 2009, 5, 1–27. [CrossRef]
11. Kakish, K.; Kraft, T.A. ETL evolution for real-time data warehousing. In Proceedings of the Conference on In-

formation Systems Applied Research ISSN, New Orleans, LA, USA, 26–30 March 2012; p. 1508. Available on-
line: https://www.researchgate.net/profile/Theresa-Kraft/publication/280837435_ETL_Evolution_for_Real-Time_Data_
Warehousing/links/56008f5308ae07629e52af09/ETL-Evolution-for-Real-Time-Data-Warehousing.pdf (accessed on 4
March 2025).

12. Jain, T.; Rajasree, S.; Saluja, S. Refreshing datawarehouse in near real-time. Int. J. Comput. Appl. 2012, 46, 24–29.
13. Jia, R.; Xu, S.; Peng, C. Research on Real Time Data Warehouse Architecture. In Proceedings of the International Conference

on Information Computing and Applications, Singapore, 16–18 August 2013; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 333–342. [CrossRef]

14. Wisnubhadra, I.; Kamal Baharin, S.S.; Herman, N.S. Open Spatiotemporal Data Warehouse for Agriculture Production Analytics.
Int. J. Intell. Eng. Syst. 2020, 13, 419–431. [CrossRef]

15. Komasilovs, V.; Kviesis, A.; Zacepins, A.; Bumanis, N. Development of the data warehouse architecture for processing and
analysis of the raw pig production data. AGROFOR Int. J. 2018, 3, 64–71. [CrossRef]

16. Sayed, S.A.; Mahmoud, A.S.; Farg, E.; Mohamed, A.M.; Saleh, A.M.; AbdelRahman, M.A.E.; Moustafa, M.; AbdelSalam, H.M.;
Arafat, S.M. A Comparative Study of Big Data Use in Egyptian Agriculture. J. Electr. Syst. Inf. Technol. 2023, 10, 21. [CrossRef]

17. El Aissi, M.E.M.; Benjelloun, S.; Lakhrissi, Y.; Ali, S.E.H.B. A Scalable Smart Farming Big Data Platform for Real-Time and Batch
Processing Based on Lambda Architecture. J. Syst. Manag. Sci. 2023, 13, 17–30. [CrossRef]

18. Jaiswal, S.P.; Bhadoria, V.S.; Agrawal, A.; Ahuja, H. Iternet of Things (IoT) for smart agriculture and farming in developing
nations. Int. J. Sci. Technol. Res. 2019, 8, 1049–1056.

19. McCarren, A.; McCarthy, S.; Sullivan, C.O.; Roantree, M. Anomaly detection in agri warehouse construction. In Proceedings
of the Australasian Computer Science Week Multiconference, January 2017, Geelong, Australia, 31 January–3 February 2017;
pp. 1–10. [CrossRef]

20. San Emeterio de la Parte, M.; Martínez-Ortega, J.F.; Hernández Díaz, V.; Martínez, N.L. Big Data and precision agriculture:
A novel spatio-temporal semantic IoT data management framework for improved interoperability. J. Big Data 2023, 10, 52.
[CrossRef]

21. San Emeterio de la Parte, M.; Lana Serrano, S.; Muriel Elduayen, M.; Martínez-Ortega, J.-F. Spatio-Temporal Semantic Data Model
for Precision Agriculture IoT Networks. Agriculture 2023, 13, 360. [CrossRef]

22. Osinga, S.A.; Paudel, D.; Mouzakitis, S.A.; Athanasiadis, I.N. Big Data in Agriculture: Between Opportunity and Solution. Agric.
Syst. 2022, 195, 103298. [CrossRef]

23. Ghaleb, E.A.A.; Dominic, P.D.D.; Singh, N.S.S.; Naji, G.M.A. Assessing the Big Data Adoption Readiness Role in Healthcare
between Technology Impact Factors and Intention to Adopt Big Data. Sustainability 2023, 15, 11521. [CrossRef]

24. Hao, S.; Zhang, H.; Song, M. Big Data, Big Data Analytics Capability, and Sustainable Innovation Performance. Sustainability
2019, 11, 7145. [CrossRef]

25. Alaskar, T.H.; Alsadi, A.K.; Aloulou, W.J.; Ayadi, F.M. Big Data Analytics, Strategic Capabilities, and Innovation Performance:
Mediation Approach of Organizational Ambidexterity. Sustainability 2024, 16, 5111. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/agronomy12030748
https://doi.org/10.4018/jdwm.2009070101
https://www.researchgate.net/profile/Theresa-Kraft/publication/280837435_ETL_Evolution_for_Real-Time_Data_Warehousing/links/56008f5308ae07629e52af09/ETL-Evolution-for-Real-Time-Data-Warehousing.pdf
https://www.researchgate.net/profile/Theresa-Kraft/publication/280837435_ETL_Evolution_for_Real-Time_Data_Warehousing/links/56008f5308ae07629e52af09/ETL-Evolution-for-Real-Time-Data-Warehousing.pdf
https://doi.org/10.1007/978-3-642-53703-5_35
https://doi.org/10.22266/ijies2020.1231.37
https://doi.org/10.7251/AGRENG1803064K
https://doi.org/10.1186/s43067-023-00090-5
https://doi.org/10.33168/JSMS.2023.0202
https://doi.org/10.1145/3014812.3014829
https://doi.org/10.1186/s40537-023-00729-0
https://doi.org/10.3390/agriculture13020360
https://doi.org/10.1016/j.agsy.2021.103298
https://doi.org/10.3390/su151511521
https://doi.org/10.3390/su11247145
https://doi.org/10.3390/su16125111

	Introduction
	Literature Review
	Data Warehouse Architectures and Optimization
	ETL Processes and Real-Time Data Warehousing
	Spatiotemporal and Agricultural Data Warehousing
	Big Data and IoT in Agriculture

	Materials and Methods
	Data Ingestion and ETL Processes
	Data Sources and Categories
	ETL Process Design
	Real-Time and Batch Processing Data
	Performance Optimization in ETL
	ETL Automation and Orchestration

	Data Warehouse (DWH) Architecture Design
	Scalable and Fault-Tolerant Storage (HDFS)
	Resource Management and Workload Optimization (YARN)
	Data Ingestion and Integration (Apache Sqoop, Apache Flume, Apache Kafka)
	High-Performance Batch Processing (Apache Spark)
	Optimized Query Processing (Apache Hive)
	Containerization and Orchestration (Docker and Portainer)
	Machine Learning and Advanced Analytics

	Development Approach
	System Security and Data Access Control
	Technology Selection

	Results
	Query Performance Benchmarks
	Use Case Illustration: Yield Estimation Query
	Fault Tolerance Tests

	Discussion
	References

