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Abstract: According to the FAO, wheat, corn, and rice are staple crops that support global
food security, providing 50% of the world’s dietary energy. The ability to predict accurately
these key food crop agricultural commodity prices is important in stabilizing markets,
supporting policymaking, and informing stakeholders’ decisions. To this aim, machine
learning (ML), ensemble learning (EL), deep learning (DL), and time series methods (TS)
have been increasingly used for forecasting due to the rapid development of computational
power and data availability. This study presents a systematic literature review (SLR) of
peer-reviewed original research articles focused on forecasting the prices of wheat, corn,
and rice using machine learning (ML), deep learning (DL), ensemble learning (EL), and
time series techniques. The results of the study help uncover suitable forecasting methods,
such as hybrid deep learning models that consistently outperform traditional methods, and
they identify important limitations in model interpretability and the use of region-specific
datasets, highlighting the need for explainable and generalizable forecasting solutions. This
systematic review adheres to the PRISMA 2020 reporting guidelines.

Keywords: agriculture; commodities; wheat; corn; maize; rice; paddy; price; prediction;
machine learning; deep learning; ensemble learning; time series

1. Introduction

Agriculture plays a critical role in the global economy, serving as the backbone of food
security, livelihoods, and trade. In 2022, the global share of agriculture value added in
GDP was 4.3%, accounting for a total amount of USD 3.8 trillion [1,2]. In many developing
nations, agriculture is a cornerstone of the economy, and it contributes as much as 25% of
their GDP and an even larger share of employment, providing income to a large segment
of the population [3]. In most developed countries, agriculture, albeit a small percentage
of GDP, is a key economic sector, as made clear by agricultural policies, such as the EU
Common Agricultural Policy, the US Farm Bill, Japan’s Agricultural Policy, and Australia’s
APAP, among others, providing subsidies and price support. In this context, the World Bank
Group states, “Agricultural development is one of the most powerful tools to end extreme
poverty, boost shared prosperity, and feed a projected 10 billion people by 2050” [4].

Among all agricultural crops, three stand out as the world’s primary staple foods, with
their cultivation combined providing over half of global dietary energy [1]. Wheat, corn
(also referred to as maize in some parts of the world), and rice (also referred to as paddy in
some parts of the world) are key global export commodities, and they are vital for human
consumption, livestock feed, and biofuel. Their role makes them central to agricultural
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policy, international trade, and food system stability. Fluctuations in their production and
price have consequences for both consumers and producers. Evenson and Gollin, in their
research [5], note that with grain prices near or at historical lows, the world’s average
caloric intake increased, leading to gains in health and life expectancy, but at the same
time, concerns have been raised since the level of intensive cultivation needed leads to
biodiversity loss, soil degradation, chemical pollution, aquifer depletion, and soil salinity.
While striving to mitigate these risks, the goal is to increase the production of wheat, corn,
and rice in the years to come to feed the projected 10 billion people by 2050.

Agricultural commodities are being traded in global markets. This comes with risks
and benefits for all parties involved. On one side, market mechanisms can help establish fair
prices by allowing farmers and agribusinesses to “lock” prices through futures contracts
and options, stabilize their income, and support long-term planning. On the other side,
the commodity markets can be influenced by speculative activity and thus make prices
highly volatile and decoupled from fundamentals. Additionally, smallholder farmers in
some developing countries may lack the infrastructure, information, or financial skills
to utilize and benefit from the market systems [6]. The price volatility in agricultural
commodities poses significant challenges for farmers, traders, consumers, and policymakers
alike. Sudden and unpredictable changes in prices can destabilize income, disrupt planning
for farmers, and lead to food insecurity, social unrest, and inflation [7]. Volatility also
adds additional levels of complexity in policymaking, as governments struggle to design
safety nets for the uncertain conditions farmers and society face. Price swings are led by
weather events, pests and diseases, geopolitical tensions, trade restrictions, and financial
speculation [8]. Therefore, managing price volatility is essential to building stable and
equitable food systems [7].

In response to the risks posed by price volatility, farmers, policymakers, traders,
agribusinesses, researchers and practitioners have used advanced forecasting methods to
improve price prediction. Agricultural markets have complex behavior that is characterized
by non-stationarity, non-normality, and non-linearity in both supply (arrivals) and price
data. This poses significant challenges for traditional statistical forecasting models. These
difficulties are further compounded by external volatility from climate events, market
speculation, and policy interventions. Such dynamics limit the effectiveness of classical
approaches. Traditional econometric models such as ARIMA (Autoregressive Integrated
Moving Average) and SARIMA (Seasonal Autoregressive Integrated Moving Average),
have been used for time-series forecasting, but the limitations they have in handling data
that is non-linear and high-dimensional, have led to a shift to other approaches [9]. Machine
learning (ML), ensemble learning (EL), and deep learning (DL) methods are powerful
alternatives. These techniques can capture complex patterns in large and diverse datasets.
These models are increasingly being applied to forecast commodity prices using as input
historical price time series, weather data, production statistics, and even textual information
from news and social media to analyze the market’s sentiments. Accurate forecasting can
help farmers, traders, investors, and policymakers make educated decisions, leading to
efficient agricultural markets [10,11], but the volatility presents enormous problems to
them [3].

This study aims to systematically evaluate the application of ML, EL, DL, and time
series techniques to agricultural commodity price prediction. This SLR intends to identify
the used techniques in the commonly studied commodities of wheat, corn, and rice, along
with their challenges and limitations, through analysis of original research articles. The
goal is to provide a comprehensive understanding of the state of the field, highlight gaps in
the literature, and propose directions for future research. The contributions of this study
are as follows:
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i.  This study provides a comprehensive analysis of common machine learning, ensemble
learning, deep learning, and time series techniques used in agricultural commodity
price prediction.

ii. It offers insights into the unique prediction requirements of agricultural commodities
forecasting.

iii. ~ This study investigates key challenges and limitations in agricultural price forecasting,
including data availability, model interpretability, and computational complexity.

This review focuses specifically on wheat, corn, and rice due to their status as the
world’s most important staple crops, as together, they provide more than half of the global
dietary energy supply. These commodities are central to food security and widely traded
and studied, making them an appropriate and impactful focus for a systematic review of
forecasting methods.

2. Research Methodology

In order to define the primary focus of this study, which is to evaluate and draw
lessons from the existing research in the prediction of specific agriculture commodity prices,
we employ a systematic review approach guided by methodologies outlined in Elberzhager
et al. [11] and Ishaq et al. [12], as shown in Figure 1. Based on their frameworks, we
formulated the relevant research questions and developed robust search strategies. This
systematic approach enabled us to identify and analyze the relevant literature in the field.

Inclusion "
S Research Search and Search Study Quality
Objecti
e Questions /| Strategy /| Exclusion /| Execution/| Selection /|Assessment
Criteria

Figure 1. Research methodology.

2.1. Research Questions and Research Objectives

Three key research objectives and corresponding research questions were formed to
guide the structure of this systematic literature review. These aimed to evaluate the fore-
casting methods applied in the selected agricultural commodity price prediction, explore
the limitations of these approaches, and explain the rationale for focusing specifically on
wheat, corn, and rice as globally significant staple crops. The objectives and questions are
summarized in Table 1.

Table 1. Research objectives and question.

Research Objective (RO)

Research Question (RQ)

Motivation

RO1: To identify and categorize the
machine learning, ensemble learning,
deep learning, and time series
techniques used in agricultural
commodity price prediction and to
provide a descriptive overview of the
publication trends, geographical
distribution, and subject focus of the
research field.

RQ1: What forecasting techniques
have been applied in predicting the
prices of agricultural commodities
such as wheat, corn, and rice?

To understand the landscape of
computational methods used in
agricultural price forecasting and
examine how the literature has
evolved over time and space.
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Table 1. Cont.

Research Objective (RO) Research Question (RQ) Motivation

RQ2: What are the key challenges
and limitations reported in the
literature regarding data quality,
model complexity, interpretability,
and computational demands?

RO2: To investigate the challenges and
limitations encountered in the
implementation of these

forecasting models.

To highlight the obstacles and
limitations faced by researchers and
practitioners in developing accurate
and reliable forecasting models.

RQ3: Why are wheat, corn, and rice  To justify the scope of the study
chosen as the target commodities based on the essential role of these
for this review? crops in global diets and markets.

RO3: To focus the review on staple crops
that are central to global food security.

2.2. Search Strategy

The Following search string has been used to find relevant articles to conduct
this study.

TITLE-ABS-KEY ((“machine learning” OR “deep learning” OR “reinforcement learn-
ing” OR “neural networks” OR “random forests” OR “support vector machines” OR
“support vector regression” OR “SVR” OR “LSTM” OR “Bayesian networks” OR “hy-
brid models” OR “ensemble techniques” OR “gradient boosting” OR “AutoML” OR
“extreme learning machine” OR “ELM” OR “decision trees” OR “KNN” OR “k-nearest
neighbors” OR “principal component analysis” OR “PCA” OR “recurrent neural networks”
OR “RNN")

AND

(“wheat” OR “maize” OR “corn” OR “rice” OR “paddy”)

AND

(“price prediction” OR “price forecasting” OR “future price” OR “price trends” OR
“market forecasting” OR “commodity price forecasting” OR “price volatility” OR “price
dynamics” OR “real-time price forecasting” OR “long-term price forecasting” OR “short-
term price forecasting”))

In the query used above, SVR is Support Vector Regression, LSTM is Long Short-Term
Memory, RNN is Recurrent Neural Network, RF is Random Forest, KNN is k-Nearest
Neighbors, and VAR is Vector Autoregression.

The search for original research articles in the field of agriculture commodity price
prediction involved collecting articles from Scopus.

The Scopus database was selected for the comprehensive and consistent indexing of
peer-reviewed journals in computer science, engineering, and agricultural sciences. This
choice supported the reproducibility and transparency of the review and ensured that
high-quality original research articles were included. The search was conducted in January
2025 and included studies published up to 31 December 2024. No additional databases,
registries, websites, or gray literature were consulted.

The choice to use a single database may limit the breadth of the literature covered; we
acknowledge this limitation and suggest that future reviews expand their scope to include
other databases, such as Web of Science and Google Scholar. Similar approaches have been
adopted in other recent SLRs (e.g., Lee [13]; Ramandanis and Xinogalos [14]; Karger and
Kureljusié¢ [15]; Lundberg et al. [16]).

A total of 75 articles were retrieved initially.
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The following filters were applied:

e Language: English
e  Document type: Journal articles only

These filters ensured that the review focused on high-quality, peer-reviewed studies
published in English.

2.3. Study Selection

The selection of relevant studies followed a structured multi-stage process based on

the criteria summarized in Table 2:

1.

Title Screening. Articles with titles clearly unrelated to price prediction or machine
learning were excluded.

Abstract Screening. The remaining articles were reviewed at the abstract level to assess
their relevance to agricultural price forecasting using machine learning methods.
Papers that did not meet the core focus were excluded at this stage.

Full-Text Review. Full texts of the remaining articles were reviewed in detail to ensure
alignment with the inclusion criteria and overall objectives of the review. Only studies
with a direct focus on forecasting the prices of wheat, corn, or rice using machine
learning or time series techniques were retained.

Table 2. Study selection criteria.

Criteria Inclusion Exclusion
. . . . Non-peer-reviewed articles, editorials,
Peer-reviewed journal articles indexed .. . .
Study Type opinion pieces, gray literature,

in Scopus

conference papers

Commodity Focus

Studies focusing on agricultural commodities:

wheat, corn (maize), or rice (paddy)

Studies on non-agricultural commodities (e.g.,
metals, energy) or financial markets

Techniques

Studies using machine learning, deep
learning, time series models, or hybrid
forecasting methods

Studies using only traditional statistical
methods (e.g., simple regression) or
no forecasting

Focus on Price

Studies explicitly focused on price forecasting

Studies focused on unrelated topics (e.g.,

Prediction or prediction yield, soil, climate) without price prediction
Language Published in English Published in other languages
Indexing Indexed in Scopus Not indexed in Scopus

After applying this process, a final set of 50 studies was selected for in-depth analysis.
This systematic review adhered to the PRISMA 2020 reporting guidelines. Two re-

viewers independently performed the screening of the titles, abstracts, and full texts. Any
disagreements were resolved through discussion. The studies were grouped according to
the forecasting techniques identified (ML, EL, DL, TS) and the selected agro-commodities
(wheat, corn, rice). No formal risk of bias assessment was performed, as the review focused

on descriptive and comparative analysis of forecasting methods. This review was not

registered, and no protocol was prepared.

Figure 2 below presents the PRISMA 2020 flow diagram of the study selection process.
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Identification of new studies via databases and registers Identification of new studies via other methods

Records removed before screening )
‘ Records ientified from: Duplicate records (n = 0) Records ientified from:

Databases (n = 75) Records marked as ineligble by automation o"”a':::::r:;‘;“’jo)
Registers (n = 0) tools (n = 0) Chation searchh n=0)
Records removed for other reasons (n = 0) oins

Identification

Records screened Records excluded
(n=75) (n=25)

Reports sought for retrieval Reports not retrieved Reports sought for retrieval Reports not retrieved
%’ (n=0) (n=0) (n=0) — (n=0)

e
)

Reports excluded: Reports excluded:

Reports assessed for eligibility Reason1 (n = NA) Reports assessed for eligibility Reason1 (n = NA)

(n =50) Reason2 (n = NA) (n=0) Reason2 (n = NA)

Reason3 (n = NA) Reason3 (n = NA)

New studies included in review
(n=50)

Included

Reports of new included studies

Figure 2. PRISMA 2020 flow diagram illustrating the study selection process. Diagram generated
using the online PRISMA2020 Shiny App developed by Haddaway et al., 2022 [17], available at:
https:/ /estech.shinyapps.io/prisma_flowdiagram/ (accessed on 10 June 2025).

3. Analysis of Original Research Articles

Data extraction was performed manually from each article by one reviewer and
verified by a second. The extracted data included the publication year, country, commodity,
model type, dataset, technique, findings, and limitations. No assumptions were made about
missing data. Since no quantitative synthesis was performed, effect sizes and confidence
intervals were not calculated. Risk of bias was not formally assessed. No effect estimates
or measures of heterogeneity were calculated. The review does not assess the certainty of
evidence (using tools such as GRADE).

The analysis of original research articles explores the various techniques employed in
wheat, corn, and rice price forecasting, focusing on machine learning, ensemble learning,
deep learning, and time series methods as shown in Figure 3. Each approach is examined
for its strengths and limitations in predicting price trends across different commodities.

3.1. Descriptive Analysis of the Selected Studies

A total of 50 studies were selected based on the inclusion criteria.

Figure 4 presents the distribution of the papers by country. China holds the re-
search lead with 17 articles published, followed by the United States and India with 8 and
8 articles, respectively.

Figure 5 displays the numbers of articles published each year. Starting in 2020, research
interest has grown rapidly in the past four years.

Figure 6 shows the percentage of papers published by subject area. Computer Science
holds the lead with 27 published papers (22.4%), followed by Mathematics with 15 (12.9%),
Economics/Econometrics/Finance with 13 (11.2%), and Agricultural/Biological Sciences
with 11 (9.5%).

3.2. Machine Learning Techniques

Many techniques of machine learning have been applied to predict commodity prices
in agriculture using different methodologies, as illustrated in Table 3, to improve predictive
accuracy. The indirect influence of crude oil on food prices was examined by Esmaeili and
Shokoohi [18] in a study using Principal Component Analysis (PCA) to study co-movement
between the food prices of seven major food commodities (eggs, meat, milk, oilseeds,
rice, sugar, and wheat) and macroeconomic indices (including crude oil price, CPI, Food
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Production Index, and GDP). They found that crude oil prices did not directly affect the
primary food price component, but they had an impact on the food production index,
and in this way, they indirectly affected food prices. Finally, Traoré et al. [19] applied
machine learning methods to ascertain whether nonlinear effects and asymmetries in price
transmission were present and showed that local rice prices in Dakar are being affected by
world prices and are more sensitive to world price increases than to price declines.

Agriculture
Commodity Price
Prediction Techniques
[
[ I [ |
. . . . Time Series Analysis

Machine Learning Ensemble Learning Deep Learning Models

1 Logistic Regression | —{  Random Forest T ANN — ARIMA
— SVM 1 XGBoost — MLP ~—{  AutoRegressive
— Decision Tree — AdaBoost T LSTM

— KNN — CNN

Figure 3. Taxonomy of the agriculture commodity price prediction techniques.

Number of Documents by Country

China 17
United States
India

Iran
Indonesia
Germany
France
United Kingdom
Thailand
South Africa
Italy

Austria
Taiwan
Switzerland
South Korea
Slovakia
Senegal
Netherlands
Malaysia
Macao

Israel

Ghana
Canada
Brazil
Bangladesh

0 2 4 6 8 10 12 14 16
Number of Documents

Figure 4. Distribution of papers by country.
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Figure 5. Published articles per year.

DOCUMENTS BY SUBJECT AREA

Other
8%

Energy

4% Computer Science

22%
Social Sciences
4%

Engineering
6%

Decision
Sciences
7%
Business, Economics,
Management and Econometrics and
Accounting Agricultural and Finance
9% Biological Sciences 11%

9%

Figure 6. Percentage of papers published by subject area.
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Table 3. Overview of machine learning techniques in wheat, rice, and corn price prediction.
Refs. Year Commodity Name Dataset Technique Findings Limitation
Oil prices indirectly ~ Historical
: Global affect food prices via macroeconomic
[18] 2011 ggﬂgsz,el(\i/lseal%xﬂk’ macroeconomic PCA the food production  relationships may
Suoar. Wheat . and food index (corr.: not account for
gab price data 0.87 with GDP, future structural
0.36 with CPI). changes
Local prices are
affected by world
Monthly average .
prices ﬁyorr‘: 199g5 prices, More 5o by
to 2014 Model-based increases than by Focused only
[19] 2022 Rice Commission recursive declines; 11.80% of on the
for Food partitioning positive deviations ordinary broken
Security (Dakar ~ T®eS and 39.50% of rice segment
retail level) negative deviations
are eliminated after
one month
Futures and cash gl efaccuratcydof
daily price data Semi i Confidence bands aehorlscas €
[20] 2024 Corn, Soybean for corn and CIUPArametric ¢, yield and Cash price
sovb Regression . depends largely
ybean price forecasts
(1991-2006) on the current
futures price
Spot Price
(South Africa),
Grain Storage
Spot Price, MAPE of 1.31%
ggrg;ﬁg Eﬁ?e' (in-sample) and
Supply (South 2.26% (out—sample) Decreased
. for 1-month prediction
[21] 2016 Corn [I}lfcl;lc?ﬁz:,tion and BPNN prediction. accuracy over
Consumption Outperformed longer periods
(USA) expert traders in
Interest Rate and real-time prediction
Currency
Exchange,
Crude Oil Prices
Weekly rice SVR outperformed Weather-only
prices and in most cities and for ~exogenous
[22] 2024 Rice weather data ARIMAX- premium quality; variable;
(2017-2022) from  GARCH, SVR ARIMAX-GARCH city-specific
seven cities stable for mid/ results; moderate
in Java low rice generalizability
ARIMA .
A ARIMAX and Limited
Grli(é 221 wheat i%lﬁ&\g“;‘(’ SARIMA performed  generalizability
[23] 2024 Wheat %acro,economic SARIMAX best; LSTM and of DL models;
indicators LSTM CNN CNN overfit hlgh error in
Re greésion ! training data testing phase
Daily wheat ARMA (1,1),
futures from ARMA (1,2), Random walk model Compared neural
[24] 2021 Wheat NCDEX Economic outperforms all network not
(May 2009- Variable p fine-tuned
August 2014) Model, ANN

Machine learning models have been tailored to forecast both yields and prices for

crop-specific forecasting. Kantanantha et al. [20] developed a semiparametric regression

model to forecast yield and a futures-based model for price forecasting, emphasizing within-

and between-year relationships and incorporating futures prices with basis adjustment to
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forecast cash prices. Ayankoya et al. [21] developed a Backpropagation Neural Network
(BPNN) model using Big Data to forecast corn prices in South Africa. Their approach
achieved high accuracy for 1-month predictions both for in-sample and out-sample predic-
tions. Additionally, their model outperformed eight volunteer expert commodities traders
in real-time prediction.

3.3. Ensemble Learning Techniques

The application of ensemble learning techniques to agricultural commodity price
prediction has been effective and has also shown potential for both short- and long-term
forecasting (Table 4). Zelingher and Makowski [25] analyzed 60 years of deflated price data
for corn, soybean, and cocoa, finding that TBATS outperformed short-term forecasts, while
Gradient Boosting Machines (GBM) excelled at long-term projections. Similarly, in a differ-
ent study, Zelingher and Makowski [26] emphasized the dominance of Northern America’s
corn production in influencing global prices and highlighted the superior performance of
Random Forest (RF) and GBM for long-term predictions, while TBATS remained effective
for horizons of 2-5 months.

Table 4. Overview of ensemble learning techniques in wheat, rice, and corn price prediction.

Refs. Year Commodity Name Dataset Technique Findings Limitation
The World Bank’s Asymmetrical
commodity Corn (Short-term, price responses to
[25] 2024 Corn, Soybean, market database, TBATS, GBM, TBATS): RA: 80%, production
Cocoa global monthly CART, LM, RF  Corn (Long-term, changes reduce
price data GBM): RA: 60% predictabﬂity
(1960-2020) consistency
RF and GBM Difficulty in
FAOSTAT corn outperform linear Capturirtl}é
yield/production CART, RF, dels for lono-t complex
[26] 2022 Corn (1961-2019), GBM, MLR, }“0 O O Aba e piex |
World Bank VAR, TBATS orecasts, TBATS for ~ Inter-regiona
corn price short-term production
(2-5 months) dependencies
Average Rice The model’s
Price dataset at MAPE reduced performance was
[27] 2023 Rice the Indonesian RF from 0.0093573 only compared
Wholesale Trade to 0.0089389 with datasets
Level (2010-2022) from UCI
Models did not
éfllil}/ll\/?& SVR Best performing capture
Daily prices AdaBoost ’ models: SVR, significant
[28] 2021 Corn, Sugar (2003-2019) ISTM. followed by volatility and
CEPEA database g coniple SVR/LSTM non-stationary
models Ensemble models data trends in
the datasets
Planting land
area, Crop price,
crop yield, Focus on a
miogat | gmove  BESVRK-0s T,
. =0.234, y an
[29] 2024 Corn volumes, import  Ensemble RMSE = 0.315; region limits
and export Bagging, RE gyR: R2 = 0.959 broader
values, and price T application

in a total of
53 variables
(2002-2023)
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Table 4. Cont.

Refs. Year Commodity Name Dataset Technique Findings Limitation
2004-2013 MLR, RFR had R? = 0.864;
weather (BARC) AdaBoost, windspeeds found to  Dataset limited to
[30] 2022 Ri and food prices Gradient be most correlated to  2004-2013;
e (OCHA) P Boosting, price; ensemble only one
Bangladesh Bagging, methods country analyzed
8 Random Forest  outperformed MLR
Futures corn
prices
(2015-2019), More com
- dai plex
CBOT; daily ML-KINN MAE 00372, RMSE  algorithms
[31] 2021 Corn temperature and  outperforms 0.0512. MAPE 0.6908 Coht i
precipitation, ML-RF : , . rﬁlg 1(rin}1)rove
Refinitiv; supply the mode
and demand
data, USDA
Error reduction
(MAPE): 53.3%,
Improvement
(Dstat): 32.4%. . .
32] 2022 Soybean, C gf?‘? S{’sg‘lflzncom ?15[% Slf"é;AfM ?e?“ci:lf‘iigi’ge“eous I;f;; gglrf%?x;yg
321 oybean, oM prices ARIMA, SVR forecast combination multiple models

(1974-2017)

outperformed all
other methods in

and techniques

both precision
accuracy and
direction accuracy

Ensemble learning methods have also been further explored to increase the accuracy
of price prediction in other studies. Dewi et al. [27] used Random Forest with hyperpa-
rameter tuning to forecast Indonesian rice prices, with MAPE reduced from 0.0093573
to 0.0089389 and R? increased from 0.9916805 to 0.9921578. Silva et al. [28] showed that
combining support vector regression (SVR) with LSTM or AdaBoost provided better pre-
diction performance for corn and sugar prices in Brazil in comparison with traditional
econometric models, and the SVR model outperformed all. Mao and Soonthornphisaj [29]
reported that the Bagging-SVR model had the highest accuracy in predicting corn prices in
Thailand, with an R? of 0.961, an MAE of 0.234, and an RMSE of 0.315, which entails the
merit of feature importance in promoting forecasting performance. Imran et al. [30] used
ensemble regressors with meteorological data, applying feature engineering and Bayesian
optimization for hyperparameter tuning; they found that Random Forest Regressor was
the best-performing model, achieving an R? of 0.864, an EV of 0.865, and the lowest MAE,
MSE, and MSLE among the ensemble approaches. Oktoviany et al. [31] developed a hybrid
ML-based model combining K-means clustering and classification (KNN, RF) to predict
corn futures price states based on weather and macroeconomic factors, improving forecast-
ing accuracy over benchmark models. Wang et al. [32] proposed an ABC-based (Artificial
Bee Colony Algorithm) ensemble strategy combining denoising techniques (SSA, EMD,
VMD) with models like ARIMA, SVR, LSTM, RNN, and GRU. The semi-heterogeneous
ABC ensemble achieved MAPE reductions of 53.3% (corn) and 50% (soybeans).

3.4. Deep Learning

Deep learning techniques have been extensively applied to forecast agricultural com-
modity prices, leveraging advanced architectures for improved accuracy, as shown in
Table 5. Several studies have integrated neural networks with decomposition and hy-
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bridization techniques to enhance prediction capabilities. For instance, Wang and Li [33]
combined Singular Spectrum Analysis (SSA) with neural networks to forecast commodity
futures prices, excelling in trend prediction but facing computational challenges. Similarly,
Choudhary et al. [34] employed a VMD-TDNN hybrid model, which showed superior
performance in both level and directional predictions, while Zhang and Tang [35] proposed
a VMD-S5GMD-LSTM model that achieved robust results despite increased computational
demands. Halim et al. [36] utilized multivariate standard LSTM with attention mechanisms
for Indonesian commodity prices, achieving better results than univariate LSTM, Bi-LSTM,
Conv LSTM, and Conv Bi-LSTM.

Table 5. Overview of deep learning techniques in wheat, rice, and corn price prediction.

Refs. Year Commodity Name Dataset Technique Findings Limitation
A SSA-NN model High
Crude oil futures — models ig
[33] 2018 Corn, Gold, prices (1983-2016) SSA, BDNN, outperform baseline  computational
Crude Oil CBOT. RBFNN, WNN NN model .
COMEX. EIA models complexity
Monthly
international price o Lack of formal
for Corn, Palm ]\EZI\I\//I[[[)) _%gll\\lnl\\{ ’ Dlrgc.tlt(.)nal . methodology to
Corn, Palm Oil Qil, Soybean Oil o 4 prediction accuracy: determine the
[34] 2023 Ao /0¥ EEMD-TDNN,  90% (Corn), MAPE
Soybean Oil (1960-2021); CEEMDAN- ~ (.0345 RMSE9.49, ~ number (n) of
World Bank TDNN DSTAT 9090 extracted modes
Commodity ’ by VMD
Market
Outperformed
Weeklv futures benchmark models in
-exly 1-step-, 2-step-, and Other price
Strong Wheat, Corn, Pr'¢®s (2905_2023) VMD-SGMD- 4-step-ahead influencin,
[35] 2024 8 O, 4 om China’s p-a - &
Sugar : LSTM forecasting scenarios  factors could
agricultural Lowest for 1-ste be considered
futures market with MAE 11 1319
MAPE 043
Standard LSTM
; ; Prices of 11 outperformed
Eggé,%ﬁ%ﬁg Meat, commodities Bi-LSTM,
Garlic, Laree Red ~ (2017-2021) Conv LSTM, and Focused only on a
, LATEE 1€ (Indonesian Conv Bi-LSTM; specific set
[36] 2022 Chilies, Curly Red  y it LSTM Do Y P
- -~ inistry of Multivariate LSTM of food
Chilies, Red Chilies, gjnance outperformed commodities
Green Chilies, and Bank univariate
Cooking Oil, Sugar Indonesia) Lowest
MAE: 255.998
Daily trading data
from the CSI 300
inglex; futures
prices of corn, Significant Focus on a limited
soybean, improvement in price  set of
[37] 2022 Corn, Soybean, polyvinyl chloride GWO-CNN- prediction accuracy. commodities may
PVC, Egg, Rebar (PVC), egg, and LSTM MAE 15.2499, not represent
rebar; Baidu and RMSE 18.8905, the entire
Google MAPE 0.0079 futures market

dual-platform

search data
(2016-2021)
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Table 5. Cont.

Refs. Year Commodity Name Dataset Technique Findings Limitation
LSTM outperformed
SVR and BP-NN; ;
Sovb }\/Iontlcll}}: prices Corn: MAE 84.82, E;Irfiltzgt}cgr; single
oybean, rom China, RMSE 102.32, : -
[38] 2024 Corn, Wheat regional market LST™ MAPE 3.08% Zi%li(;n ?igzsj
level (2014-2022) Wheat: MAE 222.66, ng wi
MESE 269.26, configuration
MAPE 7.09%
Soybean meal and Improved forecast Sgggi?iecd n
Soybean wheat future perfoymapce through commodities
[39T 2023 rcal, Wheat prices CBOT PSO, G5 combination without broader
' (1980-2021) methods; M#PE market
wheat (0. ) consideration
Related
agricultural
products
(10 features), _
Wheat, Corn Energy and Bi- L ool Generalization
[40] 2024 Sovb z;n ’ metals DSConvLSTM- MAPE = 0 5’5 was not
oybe (25 features) Attention noost addressed
Economy ’ R2 =0.9984
(3 features),
Wheat futures
(4 features)
Corn daily
average futures
prices and spot
prices (2011-2021),
national average Sensitivi
price data of corn, eiﬁf&?g’riﬂ
early rice, and .
- A AttLSTM- MAPE: 0.0043, MAE:  fluctuations
[41] 2022 Corn middle-late rice; ARpvA_BP 1.51, RMSE: 1.642 caused by
soybean futures unforeseen
Eﬁi&%ﬂ;ﬁ; economic factors
Exchange and
Zhengzhou
Commodity
Exchange
Hybrid model
Hybrid with Z‘gﬁ\iﬁiormEd Limited focus on
Monthly Thai K-means EMD-ARIMA the impact of
[42] 2022 Rice Rice FOB Price Clustering, . ’ external factors
(1987-2017) HANTS, and ANFIS, and . on forecasting
MLPNN persistence models; accuracy

RMSE = 14.37, MAPE
=4.09% (yearly).
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Table 5. Cont.

Refs. Year Commodity Name Dataset Technique Findings Limitation
Weekly corn
future prices
(2019-2023).
Com-roied hemedel
opinions, - )
news, policy CEEMDAN- }QBE_%P%N’ Single,
[43] 2024 Corn analysis, and CNN-JADE- / narrow-focused
¢ TFT JADE-RNN, and media source
other textual JADE-LSTM’ MAPE
mfl?rn?a(’;l?n ar(f[h 0.67%, MAE 17.89,
collected from the RMSE 26.37
“China Grain”
website
(2019-2023)
SCINet outperformed
Chinese corn baseline DL models
futures data + (TCN, GRU, LSTM)
causal variables for both single- and
%C(%FC? . multi-step price Not delving
echnology stoc forecasting. For deeply into
prices, US and SCINet [STM  one-step prediction  nonmarket factors
[44] 2024 Corn Chinese soybeans GRU. TCN combining Chinese and other
futures prices, US ’ soybean futures: potential
and Chinese corn MAE 15.791, MAPE  influencing
futures prices, 0.570, RMSE 21.181.  market factors
China-US Adding key
exchange rate) influencing factors
(2005-2023) further improved
performance.
1 RMSE: 135.62 (rice) Relies on accurate
. 1.6 million news : h
Onion, Potato, . - 55.96 (wheat); RMSE  event extraction
[45] 2024 Rice, Wheat ar’flcles;&)% dz%lé}é REN reduction: 13% (rice), for prediction
prices (2006-2020) 5% (wheat) reliability
Daily corn cash Dependence on
prices and corn cubic spline
[46] 2021 Corn futures prices ANN (NAR) g%%g; ig%'cggoff; m in’Ferpolation for
(2006-2011); missing data
GeoGrain approximation
The overall RRMSEs
Daily price for Egtst?r? (;n chosen
coffee, corn, £ "}5
cotton, oats, or coffee, corn,
s oyb eans, cott]gn, oats, b The ad ;
Coffee, Corn soybean oil soybeans, soybean e advantage o
Cott or{ Oats, d / heat oil, sugar, and wheat  the neural
[47] 2022 g oybe S Oy'b can i‘;g:; r"i‘g p:r]io?s' ANN (NAR) are 2.47%, 1.84%, network model

Oil, Sugar, Wheat

of 49, 63, 50, 52,
54,62, 60, and
63 years, all up
to 2021;
Macrotrends

1.71%, 2.08%, 1.70%,

1.81%, 3.19%,

and 2.12%,
respectively; they
all outperformed
the ARIMA
benchmark model

over no-change
models was small
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Refs. Year Commodity Name Dataset Technique Findings Limitation
Wheat futures
price Qata and Average trained PNL: The model’s
aerial imagery 2.1%, Average test performance may

Hard Red gcl)?fteihsoxs cloud CNN PNL: 1.01%; the degrade as data

[48] 2024 \inter Wheat elevation, and SVM, MLP proposed model become more

azimuth over the outperformed the accessible or
1 SVM and MLP the strategy

planted areas .
for wheat comparison models becomes crowded
(1984-2023)
17 variables out of LSTM-CNN had the
three categories: lowest MSE for
weather, Wheat for 5 weeks Model
macroeconomics (0.0090), 10 weeks

Oat, Corn, and the prices of ARIMA, CNN, (0.0086), and 15 perfqrmance

[49] 2023 ] LSTM, deteriorated for

Soybean, Wheat the four crops; LSTM-CNN weeks (0.0088), but 20 K
USDA (SWE), not for 20 weeks, -Ziv'e?c'
NOAA (Weather), outperformin predictions
USDA (Snow ARIMA, CNN,
Data) (1990-2021) and LSTM
Corn price for US,
South Africa
(1931 onward),
Malawi
(1996 onward); Non-masked B-VAEs Regional
corn yield for US, excelled in the US, variability in
South Africa, EOFs, non-masked AEs in dimension-

[50] 2024 Corn and Malawi AEs, VAEs, South Africa and reduction strategy
(1961-2022); corn  GLM, NN Malawi (BSS effectiveness
mask data; remote 0.68, MCC 0.9, limits universal
?fggéngoiagt)a AUC 0.93). applicability
satellite-derived
gross primary
production
Corn-related:

12 different

indicators,

namely the

previous closing

price, previous

settlement price,

opening price, Bezier curve-based

highest price, LSTM model Hich

lowest price, Bezier Curve outperformed . :
closing price, LSTM ! traditional LSTM, computational

[51] 2024 Corn settlement price, ARIMA, VMD- ?ﬁ%&éﬁ%&éﬁ%ﬁm fgﬁg}lﬁzl‘cy due to
price change ratio  LSTM, SVR predictive accuracy; indicators

1, price change
ratio 2, trading
volume, trading
value,

and open interest
(2013-2022);
Dalian
Commodity
Exchange

MAPE 0.80%, RMSE
30.42, Dstat 0.606
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Table 5. Cont.

Refs. Year Commodity Name Dataset Technique Findings Limitation
DLSTM reduced
Monthly price of RMSE, MAPE, and Limited focus
Corn and Palm oil DLSTM MAD byd720/oARIMA 03 mo%e.%.
. (1980-2020); , compared to adaptability
[52] 2021 Corn, Palm Oil World Bank TDNN, ARIMA  and 47% compared to  to other
Commodity TDNN; for corn: commodities or
Price Data RMSE 0.031, MAPE time frames.
7.337%, MAD 0.026
LSTMs outperform
: traditional models for LSTMs failed
[53] 2024 Corn Dr?ﬂy c(g(r)gofilztgé‘g)s LSTM, VAR, longer horizon to capture
I]; Ceﬁ ¢ ’ ARIMA forecasts (7-day seasonality
archar forecast horizon and trends
MAE 2.75)
Crop Specific accuracy
RANC recommendation for price
Soil test reports, loorith accuracy exceeded forecasting not
[54] 2023 Wheat, Rice crop yield data, g\%(\)/f ! AII{IIII\T 90%; price prediction  reported;
stock information NN RBM’ component challenges with
! integrated into real-time
decision system data integration
Hybrid
; SARIMA- .
s 2003 \S/\él;leﬁ; rlfluet' Historical price ~ LSTM, SVR, MAPE: Wheat 5.37, iﬁh g()i?elma
Com Ric data (2005-2022)  XGBoost, Corn 7.80, Rice 6.87 ympiexity may
orn, Rice hinder scalabilit
ARIMA, y
LSTM, SARIMA
VMD-PSO-BPNN
Daily Wheat, ?ad ’d}lle btest accuracy;
or wheat:
Corn, Soy‘pean PSO-BPNN MAPE = 0.55% Focus only on
Wheat, futures prices. with - , T
(561 2017 -0 Sovb D it MAE = 2.68, one-step
orn, Soybean (2010-2016); CCOMPOSILON  RMSE = 3.41, for ahead forecasting
Chicago Board Methods corn: MAPE = 0.57%
of Trade MAE — 2.12’ ' ’
RMSE =2.82
Wheat price,
freight volume, BP-LSTM model
:ciurlpover, express outperformed others  Limited dataset
elivery, (MSE = 0.00026); (10 years); the
[57] 2023 Wheat _cogsumer price BP-LSTM, captured complex theoretical depth
mn eﬁ’ moréeyth LSTM, BP price dynamics using  of DL approach is
i:lgfeg faa r;toi')s er external factors like still under
(2012-2021); gle_)llg};zcvolume, development
Bureau of T
Statistics of China
ARIMA o
! ARIMAX and Limited
Grliobal wheat i?{%&\g‘;' SARIMA performed  generalizability of
[23] 2024 Wheat D eereconomic  SARIMAX best; LSTM and DL models; high
indicators LSTM. CNN CNN overfit error in
Regre osion training data testing phase
%gtnésl\eTBNERT, Strong predictive
C : d Ensemble’ ibﬂ.l ty foﬁg_ggy No comparison
OTN prices an Empirical Mode =~ 0rzon ( experiments with
statistical Decompositi 2.72, MAE 63.66) and
; . position, . other model
[58] 2024 Corn variables, Weibo gy 10 60-day horizon decomposition
text data. pey (MAPE of 3.42 and P
- Additive methods have
(2007-2021) . MAE of 78.80),
exPlanations, outperformin been conducted
INBEATSX, P &

XGBoost, LSTM

comparative models
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Hybrid models incorporating optimization algorithms and external data sources have
also shown promise. Liang and Jia [37] developed a GWO-CNN-LSTM model using the
Baidu Index and Google Trends data, enhancing predictions with real-time insights, though
limited in commodity diversity. Wang et al. [38] applied an LSTM model to forecast prices
of soybean, corn, and wheat in China. The model was trained using historical prices and
optimized using time-based sliding windows. In comparative evaluations, LSTM achieved
the lowest prediction errors across all three crops, outperforming traditional methods such
as SVR and BP neural networks. Zeng et al. [39] introduced a decomposition-reconstruction-
ensemble framework with PSO and CS algorithms, improving forecast accuracy, relying on
specific datasets. Yun et al. [40] proposed the Bi-DSConvLSTM-Attention model, which
integrated BILSTM and DSConvLSTM with an attention mechanism, demonstrating signifi-
cant accuracy improvements, but with limited discussion on generalization. Guo et al. [41]
incorporated spatial-temporal factors into an AttLSTM—-ARIMA-BP model for corn price
prediction in Sichuan Province, showcasing its efficacy in regional applications. Menhaj
and Kavoosi-Kalashami [42] proposed a hybrid model using K-means clustering, HANTS,
and MLPNN for Thai rice price forecasting. Their model achieved superior accuracy
(RMSE = 14.37, MAPE = 4.09%) compared to four benchmark methods, namely ARIMA,
EMD-ARIMA, ANFIS, and persistence models.

Explainable and event-driven models have also gained traction. Wu et al. [43] intro-
duced the CEEMDAN-CNN-JADE-TFT (temporal fusion transformer) model for corn
futures, achieving high accuracy and interpretability. Wang et al. [44] applied SCINet to
predict Chinese corn futures prices, which outperformed LSTM, GRU, and TCN—even
more so when enhanced with causally related economic indicators like soybean prices and
exchange rates. Chakraborty et al. [45] developed a neural network model integrating
real-world events from news articles with historical data to forecast prices for multiple
commodities, achieving superior accuracy and outperforming all other linear and nonlinear
models, but it relied on event extraction precision. Xu and Zhang [46] enhanced short-term
forecasts by incorporating futures prices into neural network models for daily corn cash
prices and found that the NAR (nonlinear autoregressive) univariate model led to lower
RMSEs benchmarked against a naive (no-change) model and a linear autoregressive (LAR)
model, and the bivariate NAR model further improved results. In a different study, Xu and
Zhang [47] demonstrated the effectiveness of NN models over ARIMA benchmark models
for capturing long-term trends.

Advanced architectures and innovative data inputs have further improved prediction
accuracy. Thaker et al. [48] utilized CNNs with aerial imagery for wheat futures, high-
lighting the potential of visual data; their model produced greater PNL than the SVM and
MLP (multilayer perceptron) comparison models. Wang et al. [49] combined LSTM and
CNN to outperform other models in forecasting weekly grain prices, incorporating weather
and macroeconomic factors to boost performance, with the inclusion of the snow factor
for the first time in commodity price forecasting. Teste et al. [50] leveraged Autoencoders
and Variational Autoencoders with satellite-derived GPP data for corn yield and price
predictions, though regional variability posed challenges. Zhao et al. [51] proposed a
Bezier curve-enhanced LSTM model for predicting corn futures prices. The hybrid model
outperformed traditional LSTM, ARIMA, VMD-LSTM (variational mode decomposition),
and SVR, achieving the lowest RMSE (30.42), MAPE (0.80%), and Dstat (0.606).

A Deep LSTM model was developed by Jaiswal et al. [52] to forecast international
monthly corn and palm oil prices. The model outperformed ARIMA and TDNN models,
having the lowest RMSE, MAPE, and MAD and the best directional accuracy. In another
study, Brignoli et al. [53] compared LSTM-RNN:Ss to classical econometric time series models
for forecasting corn futures prices. LSTM consistently outperformed traditional models,
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particularly at longer horizons, but it required careful preprocessing to capture seasonality
and trends. Daniel et al. [54] proposed the “RANC Crop Recommendation Tool,” a crop
recommendation and price forecasting model using DNNs, achieving over 90% accuracy,
and it achieved better results than NN and Naive Bayes comparison models, but specific
metrics for price forecasting were not detailed separately. Patil et al. [55] proposed a hybrid
SARIMA-LSTM (HySALS) model to forecast the global prices of five key commodities. The
approach achieved MAPEs of 5.37 for wheat, 7.80 for corn, and 6.87 for rice on test data,
showing strong predictive performance. A study by Wang et al. [56] proposed four hybrid
models (BPNN optimized by the particle swarm optimization (PSO) algorithm and four
decomposition methods: empirical mode decomposition (EMD), wavelet packet transform
(WPT), intrinsic time-scale decomposition (ITD), and variational mode decomposition
(VMD)) to forecast futures prices of wheat, corn, and soybean. VMD-PSO-BPNN yielded
the lowest MAPE across all commodities, confirming superior accuracy. Jiang et al. [57]
proposed a BP-LSTM hybrid model for short-term wheat price forecasting in China. The
model incorporated multiple external factors and achieved high accuracy, with the lowest
MSE (0.00026) compared to LSTM-only and BP-only approaches. Wang et al. [58] proposed
a deep learning model combining ChineseBERT, text CNNs, and ensemble empirical mode
decomposition to predict corn futures prices using Weibo sentiment analysis, achieving
high accuracy for 30- and 60-day horizons.

Collectively, these studies underline the versatility and potential of deep learning in
agricultural commodity price forecasting.

3.5. Time Series Models

Time series models have been extensively applied to predict commodity prices in
agriculture, with various approaches demonstrating unique strengths and limitations, as
shown in Table 6. Kohzadi et al. [59] compared feedforward neural networks with ARIMA
models for price forecasting, highlighting the neural networks’ superior ability to reduce
errors and capture trends, albeit with the need for careful hyperparameter tuning. Similarly,
Sharma and Burark [60] identified ARIMA (1, 1, 1) as the most effective model for corn
price prediction over ANN and ESM (exponential smoothing models) in Rajasthan markets,
though its reliance on historical data posed challenges in adapting to sudden market shifts.

Table 6. Overview of time series model techniques in wheat, rice, and corn price prediction.

Refs. Year Commodity Name Dataset

Technique Findings Limitation

Neural networks
achieved 27% and

56% lower MSE Requires careful

Monthly prices

[59] 1996 Live Cattle, Wheat (1950-1990) ARIMA, FFNN ?Rnllll\)/lie?\/ng 0.087 ?yp.erparameter
; .087, unin.
AME 0.154, &
MAPE 4.235
ARIMA (1,1,1)
achieved lowest AIC
Monthly prices of 82&257)&138/ IS\./]?ED Limited
corn in Rajasthan  ARIMA, NEY adaptability to
[60] 2016 Corn K ANN. ESM (71.04), MSE 44 Kot
markets ’ (11,477.78), and sudden marke
(2002-2013) MAPE (5.64), fluctuations
outperforming

other models
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Table 6. Cont.

Refs. Year Commodity Name Dataset Technique Findings Limitation
MAE, RMSE, MAPE: .
el o Relies on the
Monthly prices §§éM§Aﬁ§N’ {{21%3371(9 /33561?0/0 Y accuracy of
. from Januar 4 , T Gl autoregressive
[61] 2018 Rice, Wheat, Corn 1990 Y ARIMA-ANN, Wheat: 9.779%/ bl selecti
5 to ARIMA-SVR,  11.371%/4.347% variaple selection
eptember 2015 ARIMA-MARS Corn: 6 4950/0/ for effe.CtIVe
9.102%/3.785% predictions
In error metrics, the
combined model had
the lowest MAE Conflicting
Wheat monthly ARIMA, ANN, ZI?SZI\,/IIXIIS)E %)453 4(;%/5’ results under
[62] 2007 Wheat spot price Combined In MMRR (mean * different
(1996-2005) model monthly return rate) ~ €valuation
and Dstat, ANN has criteria
the highest:
0.9627/91.667.
SVR outperformed
Weekly ri;e in most cities and for Weather-only
prices an remium quality;
precipitation ARIMAX_ B RIMAX-GARCH e
[22] 2024 RICE Weather data GARCH SVR Stable fOI‘ mld/lOW Clt - eC’IIfIC
(2017-2022) from ’ rice. Average MAPE Y ltp' derat
seven cities 3.04%, average resu s,lm(]):)_lejra €
in Java RMSE 335.01, generalizability
average MAE 291.19
Global prices of
wheat, barley,
olive oil, palm
oil, sunflower oil,
rice, and sugar;
134 monthly
macroeconomic
time-
series data,
including those SAIEIIQI}/II\?A The linear regression Did K
that are related to A praray model outperformed 1d not take
, ; .~ environmental
[23] 2024 Wheat output and SARIMAX all others in testing; variables
income, labor LSTM ’ MAE 32.23 and into account
market, CNN ILR RMSE 38.97
consumption and !
orders, orders
and inventories,
money and credit,
interest rates and
exchange rates,
prices, and stock
market
(1990-2024)
Daily spot
market prices of VMD-ARIMA ;
c Crud Corn, Crude Oil, EMB_&%}E} A model f}?r 4 %?Oiledtﬂgt
orn, Crude and Gold ’ corn achieve o .
(631 2022 i) Gold (2016-2021); D A MAE =0.3566, predictive ability
Bloomber RMSE = 0.5886 of the
& BPNN, ARIMA 1 BPNN model
commodities ’ MAPE = 0.0954

index
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Table 6. Cont.
Refs. Year Commodity Name Dataset Technique Findings Limitation
ARIMA and
SARIMA performed
Wheat dailv US well for short-term éi{%/ll\?:nd del
heat daily ARIMA, predictions (Daily ) models
[64] 2022 Wheat D009, 2018 SARIMA, MSE 0.0003), BPN  TE7e 58,
( ﬂ; d )tl 1 BPN, LSTM outperformed them |~ "
eater et in weekly and pri((:ge forecasting
monthly MSE
(0.0005, 0.0004)
Nonlinear Auto-
VV\Y}el(e}l(eIZale price Regressive RMSE: 1,05% 0 Igc?rcr{ft)?rﬁation (hy-
[65] 2023 Yellow Corn index of yellow ~ Neural (training), 1.08% 1 14 /ensemble]
. C}}Il' Network, RW, (validation), models
corn in -hina AR-GARCH, 1.03% (testing) o .
(2010-2020) SVR. RT, LSTM for comparison
Daily wheat
futures prices,
Gram futures
prices, real rate of ARMA (1,1),
interest, futures ARMA (1 ,2) , Ra?dO? Wali(l 1’1’1110 del Compared neural
- . ) outperformed a
[24] 2021 Wheat prices of wheatin  Economic (RMSE 0.6948 network not
the US, other Variable Model, MAE 0 4627) ’ fine-tuned
related economic ~ ANN, RW :
variables.
NCDEX
(2009-2014)
Focused on
. . - latilit
) Stochastic Evidence of volatility Vo Y.
grude Og %’ﬂlrets, volatility spillover post-2006 J;ﬁﬂzﬂlﬁzﬁ)gﬂ oct
[66] 2011 Crude Oil, fu(;flr;easn €a models, from oil to corn and price prediction
Corn, Wheat (1998-2009); Bayesian wheat; speculation (which is only a
CBOT ! Markov chain and scalping limitation y
Monte Carlo increase volatility regarding the
scope of this SLR)
Predictive models
revealed systematic
information from
market
fundamentals,
macroeconomic
developments, and o
Wheat. Sovb Monthly data AR VAR, VEC, financial factors. COI(‘;lpllemty in
[67] 2021 A eat, Soybean, from January ARCH, VEC and s-VAR mo 'ef 1 q
orn %)980 tob 016 GARCH models performed specification an
ecember best; REER was most implementation
predictive;
macroeconomic
variables improved
long-term
commodity

price forecasts.

Hybrid models combining ARIMA with computational intelligence techniques have

demonstrated enhanced forecasting accuracy. Shao and Dai [61] integrated ARIMA with
ANN, SVR, and MARS to predict prices of rice, wheat, and corn, showing that these
hybrid models outperformed standalone approaches. Similarly, Zou et al. [62] explored

a linear combination model of ARIMA, ANN, and a combined model for wheat prices in

China, where ANN excelled in capturing turning points and delivering high mean monthly
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returns, while in error measures, the combined model performed better, thus creating
some ambiguity. Sentosa et al. [22] compared ARIMAX-GARCH and SVR models for rice
price forecasting across seven Indonesian cities, finding SVR to be superior in most cases,
particularly for premium rice, while ARIMAX-GARCH performed better for lower-grade
variants. Yadav [23] compared ARIMA, SARIMA, ARIMAX, SARIMAX, LSTM, CNN, and
LR (linear regression) models for global wheat price forecasting and found that LR had an
MAE of 32.23 and an RMSE of 38.97.

Decomposition techniques combined with ARIMA have further improved price fore-
casting in agriculture. Antwi et al. [63] employed EMD and VMD in combination with
ARIMA and BPNN to forecast prices of corn, crude oil, and gold, finding that the VMD-
ARIMA model achieved the smallest predictive errors for corn. However, EMD’s contribu-
tion to the predictive ability of the BPNN model was limited. Similarly, Preetha et al. [64]
found that while the ARIMA and SARIMA models were effective for short-term wheat
price forecasts, neural network models like BPN and LSTM performed better for long-term
predictions, especially with weather data.

Advanced neural network models and sentiment analysis have emerged as promising
tools for time series forecasting. Xu and Zhang [65] utilized a nonlinear auto-regressive
neural network to forecast yellow corn prices in China, delivering stable and accurate
results, outperforming all comparison models (RW, AR-GARCH, SVR, RT, LSTM). Ku-
mar [24], in their study, compared the ARMA, ANN, and RW models for forecasting Indian
wheat futures. The random walk model delivered the lowest RMSE and MAE. Du et al. [66]
used stochastic volatility models and Bayesian MCMC to assess oil price volatility and its
spillover effects on corn and wheat futures. Results showed significant post-2006 volatility
transmission from oil to corn and wheat due to ethanol-driven interdependence.

Crespo Cuaresma et al. [67] used a comprehensive econometric framework involving
AR, VAR, VEC, ARCH, and GARCH models to forecast wheat, soybean, and corn prices.
Their results highlight the predictive value of macroeconomic variables—particularly real
exchange rates (REER)—and the effectiveness of VEC models.

The previous section highlighted how the techniques have been applied in practice,
their effectiveness in different forecasting scenarios, and the advancements made in in-
tegrating multiple methods to enhance prediction accuracy. Table 7 presents a unified
comparison of selected forecasting models applied to wheat, corn, and rice price prediction.
The studies included in this table were selected based on the availability of clearly reported
performance metrics (e.g.,, MAPE, RMSE, R?, or techniques comparison) and their focus on
directly comparing models using quantitative evaluation.

Table 7. Unified performance comparison table.

Refs. Year Commodity Model Type Technique Evaluation Metric Performance
Rice,
[68] 2021 Cor Sovbean ML SVM RRMSE 7.45 (avg)
1.31% (in),
[21] 2016 Corn ML BPNN MAPE 2.26% (out)
[27] 2023 Rice EL Random Forest MAPE 0.0093573
[29] 2024 Corn EL Bagging SVR  R2/MAE/RMSE 0.961/0.234/0.315
[30] 2022 Rice EL Random Forest R2 0.864
[31] 2021 CORN EL ML-KNN MAE/RMSE/MAPE  (.9372/0.0512/
[34] 2023 Som PalmOil by o g VMD-TDNN  MAPE/RMSE/DSTAT 0.0345,/9.49/90.90

Soybean Oil
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Table 7. Cont.
Refs. Year Commodity Model Type Technique Evaluation Metric Performance
Corn, Soybean, . GWO- 15.2499/18.8905/
[37] 2022 PVC, Egg, Rebar DL Hybrid CNN-LSTM MAE/RMSE/MAPE 0.0079
Sovb Corn: 84.82/
oybean, 102.32/3.08%
[38] 2024 Corn, Wheat DL LSTM MAE/RMSE/MAPE Weat: 222.66/
269.26/7.09%
Soybean . o
[39] 2023 Meal, Wheat DL Hybrid Full-PSO-CS MAPE 0.7144%
Bi-
Wheat RMSE/MAE/ 5.61/3.63/
[40] 2024 ’ DL DSConvLSTM- 3
Corn, Soybean Attention MAPE/R 0.55/0.9984
AHLSTM-
[41] 2022 Corn DL + TS ARIMA-BP MAPE/MAE/RMSE 0.0043/1.51/1.642
. . K-means + 0
[42] 2022 Rice DL Hybrid MLPNN RMSE/MAPE 14.37/4.09%
CEEMDAN-
[43] 2024 Corn DL Hybrid CNN- MAPE/MAE/RMSE 0.67%/17.89/26.37
JADE-TFT
[44] 2024 Comn DL Hybrid SCINet MAE/MAPE/RMSE  1>731/0-570/
Onion: 155.56,
Onion, Potato, . Potato: 86.08,
[45] 2024 Rice Wheat DL Hybrid REN RMSE Rice: 135.62,
Wheat: 55.96
[46] 2021 Corn DL ANN (NAR) RMSE 0.00047
Coffee: 2.47%,
Corn: 1.84%,
Coffee, Corn, Cottgn: 1.071 %o,
47] 2022 Sotton, Oats, DL ANN (NAR)  RMSE e 0
[47] Soybean, Soybean ( ) oybean: /Lo,
QOil, Sugar, Wheat Soybean Oil:
s ougar, 1.81%, Sugar:
3.19%,
Wheat: 2.12%
Hard Red . o
[48] 2024 Winter Wheat DL Hybrid CNN PNL 1.01%
Wheat for
Oat, Corn, . 5 weeks: 0.0090,
[49] 2023 Soybean, Wheat DL Hybrid LSTM-CNN MSE 10 weeks: 0.0086,
15 weeks: 0.0088
. Malawi
[50] 2024 Corn DL Hybrid AEs, VAEs BSS/MCC/AUC 0.68/0.9/0.93
[51] 2024 Corn DL Hybrid Bezier LSTM RMSE/MAPE 30.42/0.80%
. For Corn: 0.031/
[52] 2021 Corn, Palm Oil DL DLSTM RMSE/MAPE/MAD 7.337%,0.026
(Seven-day
[53] 2024 Corn DL Hybrid LSTM-RNN MAE forecast
horizon) 2.75
Wheat, Millet
Y ’ SARIMA- Wheat 5.37, Corn
[55] 2023 Sorghum, DL + TS LSTM MAPE 7.80, Rice 6.87

Corn, Rice
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Table 7. Cont.
Refs. Year Commodity Model Type Technique Evaluation Metric Performance
Wheat 0.55%/
Wheat, . VMD- 2.68/3.41
[561 2017 o, Soybean DL Hybrid PSO-BPNN ~ MAPE/MAE/RMSE ., 0579,/
212/2.82
[57] 2023 Wheat DL BP-LSTM MSE 0.00026
[59] 1996 Live Cattle, Wheat ML, TS ARIMA, FFNN  MSE/AME/MAPE gvllgza/z 02'2_27/
1677.17/1685.86/
[60] 2016 Comn TS, ML ARIMA (1L11)  4ns! /Sla%%AD/ 71.04/11,477.78/
5.64
Rice: 10.365%/
ARIMA-ANN 12.037%./2.650%
[61] 2018 Rice, Wheat,Corn TS, ML ARIMA-SVR  MAE/RMSE/MAPE ‘1"1”597?;/9/27394/7‘)4
ARIMA-MARS 371%/4.347%
Corn: 6.495%/
9.102%/3.785%
Combined model
had the lowest
MAE (7.662),
ARIMA, ANN, MSE (143.045),
[62] 2007 Wheat TS, ML Combined Mﬁ%%ﬁ%ﬂ{ /Dstat MAPE (0545%);
mod-el stat in MMRR and
Dstat, ANN had
the highest:
0.9627/91.667
Average
. ARIMAX- MAPE/average 3.04%/335.01/
[22] 2024 Rice TS, ML GARCH SVR  RMSE, e
average MAE
ARIMAX,
[23] 2024 Wheat TS/DL EQ%AMA’ MAE,/RMSE 32.23/38.97
CNN, LR
Corn, Crude 0.3566/0.5886/
3] 2022 o DL + TS VMD-ARIMA  MAE/RMSE/MAPE (528
ARIMA,
ARIMA SARIMA daily
[64] 2022 Wheat DL + TS SARIMA, MSE MSE. 0.0008; BPN
BPN, LSTM y
! monthly MSE:
0.0005, 0.0004
30-day horizon
(MAPE of
272, MAE of
[58] 2024 Corn DL Hybrid %%%‘ggts’ifSTM MAPE/MAE 63.66) and 60-day
! horizon (MAPE
of 3.42 and MAE
of 78.80),
Nonlinear Auto-
Regressive 1.05% (training),
Neural 1.08%
[65] 2023  Corn DL, TS Network, RW, RMSE (validation),
AR-GARCH, 1.03% (testing)
SVR, RT, LSTM
[24] 2021 Wheat TS, ML e RMSE/MAE 0.6948,/0.4627
[67] 2021 Wheat, TS VEC, s-VAR MAE/MSE 7.331/128.674

Soybean, Corn
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MAPE (Mean Absolute Percentage Error) is the average of the absolute percentage
differences between actual and predicted values; it is useful for comparing forecast accuracy
across datasets. MAE (mean absolute error) is the average of the absolute differences
between actual and predicted values, a straightforward measure of average prediction error.
RMSE (root mean squared error) is the square root of the average of squared prediction
errors; it gives a greater weight to larger errors. R? (coefficient of determination) is a
statistical measure indicating how well predictions approximate actual outcomes; values
closer to 1 indicate better model performance. MAD (mean absolute deviation) is the
average of the absolute deviations between actual and predicted values; it is like MAE but
sometimes used in different contexts.

While additional studies were reviewed, some did not provide consistent, comparable
performance data, or they focused on qualitative aspects, specific components of hybrid
frameworks, or regional insights without clear model benchmarking. Therefore, to maintain
clarity and comparability, only representative studies with well-documented metrics and
outcomes are included in this summary.

4. Discussion

This section focuses on the methods employed for predicting the prices of wheat, corn,
and rice, their evolution, and the challenges in their use. It details multiple methods, includ-
ing statistical models, machine learning algorithms, and hybrid techniques, that predict
price trends for the selected agricultural commodities and how they impact the results. The
evolution of these techniques is presented in the context of obtaining higher accuracies
and adaptability and improvement in the limitations of data availability, computational
complexity, and model interpretability. The shape of these challenges still constrains the
development of more robust reliable forecasting models.

Descriptive synthesis was employed. Data were organized into structured tables and
visual taxonomies. No meta-analysis was conducted. No heterogeneity or sensitivity analy-
ses were performed. This review is limited by the absence of formal quality assessment and
a lack of meta-analysis. Despite this, it highlights key gaps in commodity price forecasting
and suggests future work on the explainability and transferability of models. Practical
implications include better-informed policymaking and farm-level decision support.

4.1. Common Techniques

The analysis of approaches for agricultural commodity price prediction reveals the
increasingly sophisticated nature of the field in terms of the use of advanced computational
techniques. Figures 7 and 8 present the frequency of the techniques and methods used in
the price prediction of the selected agricultural commodities. Multi-class classification is
usually handled using machine learning techniques, as they are convenient and can work
with various datasets. Since feature selection techniques such as Support Vector Machines,
Decision Trees, and Random Forests excel at capturing nonlinear relationships as well
as performing robust predictions, these methods can be very useful [26,29,31]. Ensemble
learning combines various models to strengthen their individual algorithms’ faults to
improve predictive accuracy. Techniques such as GBM and Boosting can work on complex
datasets and adjust prediction horizons [26].

Deep learning methods have become increasingly popular due to their efficiency
in learning complex patterns in extensive and unstructured data. These architectures
include Long Short-Term Memory (LSTM) networks [53], CNNs, and hybrid models, which
are suited to long-term forecasting and temporal dependencies [48]. These models often
outperform traditional methods in accuracy but have greater complexity and computational
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demands. Time series models, including some of their hybrids (ARIMA), remain important
for forecasting because of their interpretability and their effectiveness in trend analysis [60].

30
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Figure 7. Frequency of techniques used.
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Figure 8. Common models used in commodity price prediction.

Support Vector Machines (SVMs) are popular machine learning approaches because
they work well when dealing with high-dimensional data and nonlinear relationships [68].
Decision Trees are often used for predictive modeling because they are simple and easy to
interpret [25]. Random Forest is a dominant technique for ensemble learning. It reduces
overfitting and improves predictive accuracy through the aggregation of multiple decision
trees [29]. GBM is popular for its efficiency and has strong performance in structured
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datasets [26]. Featuring the ability to model sequential data and the ability to capture
temporal dependencies, LSTM networks are widely used with deep learning methods
for time-series forecasting [53]. Other architectures, including Artificial Neural Networks
(ANNSs) and Convolutional Neural Networks (CNNs), complete the toolkit for complicated
patterns and large datasets [43]. Traditional time series methods such as ARIMA provide
solid trend analysis and interpretability, and more modern approaches like Autoregressive
methods are flexible in working with seasonality and irregularities [64].

4.2. The Studied Commodities

Among the commonly studied commodities—wheat, corn, and rice—the largest
occurrence frequency is observed for corn, as depicted in Figure 9, which is often analyzed
due to its importance as a staple crop and its wide use in the food, feed, and biofuel
industries [31]. Its price is susceptible to many factors, including weather conditions,
the amount produced in a specified period, and large economies. Wheat is also a global
staple crop, and its price fluctuations can have wide-ranging economic and food security
implications [69]. To enhance prediction accuracy, researchers often study its relationship
with external factors, such as global oil prices and market volatility. Rice is a staple for
more than half of the world’s population, and price prediction studies have focused on it
due to its critical role in food security. Price dynamics are often related to domestic and
international production, exchange rates, and price interventions [18].

B Wheat

@ Corn/Maize

@Rice

Figure 9. Percentage of each studied crop in the literature.

4.3. Evolution of Techniques

Techniques that evolved in the agricultural commodity price prediction problem
follow a progressive change from simple and conventional to more sophisticated and
integrated methods. Traditional statistical models like ARIMA and foundational ML tools
such as PLS regression and neural networks have been used in earlier studies to identify
linear and nonlinear relationships in the data, but they continue to be extensively used
for their interpretability, simplicity, and performance. In time, ensemble learning models
that utilized the combined strengths of multiple algorithms such as Random Forest and
XGBoost increased predictive accuracy [29]. These models perform better than previous
approaches, especially in cases of complex data sets with many interacting features. Deep
learning techniques have provided robust techniques for handling temporal dependencies
and complex patterns inherent to agricultural data. Methods like LSTM and hybrid models
like SARIMA-LSTM [55,70] have been used to model sequential data. Frameworks that
combine time series methods with deep learning, such as AttLSTM-ARIMA-BP [41], merge
domain-specific insights with computational advances. The growing use of large datasets,
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advances in computational power, and the need for improved predictions to tackle market
volatility and global food security are driving the evolution of forecasting.

The adoption of techniques for agricultural commodity price forecasting has pro-
gressed over time in distinct phases (Figure 10). Early research (prior to 2017) relied on
traditional methods such as ARIMA and foundational ML models, valued for their sim-
plicity and interpretability. From 2017-2018, deep learning approaches began to appear,
although their use was limited. There was no noticeable increase in novel techniques
during 2019-2020. However, starting in 2021, there was a substantial surge in the appli-
cation of deep learning and time series methods, particularly LSTM-based architectures
and hybrid models. Ensemble learning also gained traction in this period. In 2023-2024,
deep learning and time series remained dominant, with ensemble and standard machine
learning techniques also contributing to the methodological landscape.
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Figure 10. Evolution of agriculture commodity price prediction techniques.

4.4. Challenges and Limitations
4.4.1. Data Availability

One of the primary challenges observed in agricultural commodity price forecasting is
the reliance on limited or region-specific datasets, which can block the generalizability of
the models [71]. Models trained from datasets belonging to certain countries or markets
perform poorly when applied to others with different economic conditions. This limitation
can lower the credibility of forecasting models, particularly for long-term predictions.
Additionally, incomplete and low-quality data, such as missing export/import statistics or
meteorological conditions, reduce the effectiveness of models.

4.4.2. Model Complexity and Computational Challenges

Many of the forecasting models employed in agricultural price prediction are com-
putationally intensive, especially when multiple techniques are combined or when deep
learning architectures are used [72]. Thus, even though LSTM, CNN, and many other
hybrid techniques tend to provide better efficiency than traditional techniques most of
the time, they can be quite computationally heavy. This malleability is typical for longer
training times, scaling resource consumption, and issues of scaling, particularly in real-time
applications or large volumes of data. Furthermore, using more models or techniques
simultaneously, for example, the complicated system that integrates ARIMA and deep
learning methods, may do a better job when it is used to make predictions, but they come
with high model complexity that might be hard to address and control. For instance,
models developed to integrate different algorithms such as LSTM-CNN registered great
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performance; nevertheless, they demand massive computer processing and could hardly
be implemented at an extremely large scale.

4.4.3. Model Interpretability

The reviewed studies are also faced with another challenge: interpretability is missing
from many advanced forecasting models, e.g., LSTM and CNN [73]. While these models
may be precise, they lack interpretability; in other words, it is very difficult to say how
exactly the model comes to a particular prediction, which is a significant requirement for
agricultural markets. In this case, a lack of clear and coherent explanations of model results
poses a problem to the use of such models in practice. In addition, many models show
inconsistent performance depending on the forecast horizon and market condition, and
this makes it hard to deploy them. For instance, deep learning methods can make good
long-term predictions but may perform as well in short-term predictions or on datasets
containing significant price fluctuations supported by extreme economic factors that may
be beyond humans’ control to forecast. This places further refinement and optimization
required to enhance the robustness and reliability of forecasting models to more general
scenarios and datasets.

4.4.4. Interaction of Limitations

The limitations discussed—data availability, model complexity, and interpretability—
often interact in ways that compound the overall challenge. For example, limited and
region-specific datasets reduce the volume and variety of input features available for train-
ing, which in turn pressures researchers to use more complex models (e.g., deep learning
with multiple layers or hybrid structures) to extract patterns. These more complex mod-
els tend to require greater computational resources and longer training times, increasing
operational costs and making them much more difficult to deploy. Furthermore, such
models are often opaque or “black box” in nature, making them uninterpretable, especially
when trained on sparse or noisy datasets. This lack of transparency undermines user trust
and limits adoption, particularly in high-stakes agricultural policy contexts. Thus, these
limitations form a cycle, where attempting to solve one issue may adversely affect others.

In addition to the methodological challenges already addressed, the forecasting of
agricultural commodity prices remains difficult due to the broad range and variability of
influencing factors. These include oil prices [18], global market linkages [19], and weather-
related variables such as rainfall, temperature, humidity, wind speed, and sunshine [30,31,
68]. Macroeconomic indicators, as well as domestic and international demand and supply
conditions, have also been identified as significant contributors to price fluctuations [21].
The increasing financialization of agricultural markets has introduced further volatility and
complexity [43].

These factors, and their interactions, influence both the selection and performance of
forecasting models. As highlighted by Zelingher and Makowski [25], no single model can
be expected to perform best across all contexts. Model effectiveness varies depending on
the specific crop, forecasting horizon, data availability, and preprocessing strategies [27,29].
A notable limitation across the reviewed studies is the absence of standardized datasets and
consistent evaluation metrics, which prevents direct comparison of model performance [53].

Several additional considerations, such as the selection of time lags, the configuration
of model parameters (e.g., learning rate, window length), and the choice of input features,
were also shown to significantly affect forecasting results [33,35,36]. Furthermore, the
integration of external data—such as sentiment indicators, macroeconomic variables, and
open-source weather data—has shown potential to improve predictive performance [26,41,
42], though systematic validation remains limited.
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Given the volatility of grain commodity prices and their implications for producers,
markets, and consumers [41,42], the development of forecasting models that are both
accurate and interpretable is essential. Priority should be given to the advancement of
explainable Al approaches and hybrid frameworks that support informed decision-making
in real-world applications [45,49].

One of the main limitations encountered in this review is the lack of a standardized
framework for evaluating and comparing forecasting models under common conditions. A
potential direction for future research involves the development of controlled, game-like
simulation environments, like those used in supply chain forecasting competitions [74].
Such platforms would allow researchers to test their models using the same datasets and
forecasting scenarios, facilitating more realistic, transparent, and reproducible performance
comparisons. This approach could complement existing empirical evaluations and con-
tribute to the establishment of benchmarking standards in the field.

5. Conclusions

Agricultural commodity price forecasting techniques, commodities, and associated
challenges were systematically reviewed herein to objectively and comprehensively analyze
advancements in the field up to 31 December 2024. This provides important insights into the
adoption of machine learning (ML), ensemble learning (EL), deep learning (DL), and time
series approaches, with new predictive performance contributions. Staple crops like wheat,
corn, and rice are commonly forecasted for their contribution to universal food security.
This study highlighted persistent challenges, such as the generalization of models being
limited to region-specific datasets, computational complexity, and lack of interpretability in
advanced models. This review highlights the need to develop more robust and scalable
forecasting techniques that leverage multiple data sources, such as weather, economic, and
trade data. Moreover, explainable Al (XAI) approaches should be emphasized for more
interpretable and trusted complex models for adoption in real-world applications.

The absence of the use of standardized datasets to be used as benchmarks does not
allow for cross-comparison of models and cross-study replication. Alongside this deficiency,
the use of different/inconsistent evaluation metrics hinders forecasting accuracy assessment
and model comparison.

Future work should engage in the development of hybrid models, which will uti-
lize the strength of ML, DL, and time series methods while addressing their weaknesses.
Standardizing and placing datasets into open-access repositories alongside the use of
common evaluation metrics could improve model generalizability and benchmarking.
Region-specific challenges and socioeconomic factors should be incorporated into fore-
casting models to improve their relevance and impact. Finally, the utilization of abundant
and relevant exogenous data (weather, macroeconomic indicators, sentiment markers, etc.)
would probably greatly benefit the prediction accuracy of the models. Additionally, future
studies should prioritize the development of explainable Al (XAI) frameworks tailored to
agricultural forecasting, enabling model transparency and user trust in real-world decision-
making contexts. Another important direction is the design of regionally transferable
forecasting systems trained on multi-country datasets and evaluated under variable market
conditions. These strategies would help overcome current limitations in generalizability
and interpretability while supporting broader adoption of advanced models. This study
lays a foundation for the development of agricultural price prediction research, innovation,
and sustainable agricultural practices.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

ANN Artificial Neural Network
ARIMA AutoRegressive Integrated Moving Average
ARIMAX ARIMA with Exogenous Variables
BP Backpropagation

BPNN Backpropagation Neural Network
CBOT Chicago Board of Trade

CNN Convolutional Neural Network
CS Cuckoo Search

DL Deep Learning

EL Ensemble Learning

EMD Empirical Mode Decomposition
EV Explained Variance

FFNN Feedforward Neural Network
GDP Gross Domestic Product

GRU Gated Recurrent Unit

GWO Grey Wolf Optimizer

ITD Intrinsic Time-scale Decomposition
KNN k-Nearest Neighbors

LST™M Long Short-Term Memory

MAPE Mean Absolute Percentage Error
MAE Mean Absolute Error

ML Machine Learning

MLP Multi-Layer Perceptron

MSE Mean Squared Error

MSLE Mean Squared Logarithmic Error
NN Neural Network

PLS Partial Least Squares

PCA Principal Component Analysis
PSO Particle Swarm Optimization

R2 Coefficient of Determination

RF Random Forest

RFR Random Forest Regressor

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SARIMA Seasonal ARIMA
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SARIMAX Seasonal ARIMA with Exogenous Variables
SCINet Series-wise Convolutional Interaction Network
SLR Systematic Literature Review
SSA Singular Spectrum Analysis
SVR Support Vector Regression
SVM Support Vector Machine
TDNN Time-Delay Neural Network
VMD Variational Mode Decomposition
XGBoost Extreme Gradient Boosting
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